代码随想录算法训练营Day48 || ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

问题1:198. 打家劫舍 - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。

思路:该题逻辑关系较为简单,dp[j]表示到j点时的最大值,代码如下:

cpp 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        if(nums.size()==1) return nums[0];
        if(nums.size()==2) return (nums[0]<nums[1] ? nums[1] : nums[0]);
        vector<int> dp(nums.size()+1,0);
        dp[0] = nums[0];
        dp[1] = nums[1];
        for(int i=2;i<nums.size();i++){
            if(i >= 3) dp[i] = max(max(dp[i-1],nums[i]+dp[i-2]),nums[i]+nums[i-3]);
            else dp[i] = max(dp[i-1],nums[i]+dp[i-2]);
        }
        return dp[nums.size()-1];
    }
};

问题2:213. 打家劫舍 II - 力扣(LeetCode)

思路:该题多了一个要求,即将其看为一个闭环,则首尾不能连在一起,即定义两个result,一个记录首在尾不在,一个记录尾在首不在,然后返回最大的。代码如下:

cpp 复制代码
class Solution {
public:
    int robRange(vector<int>& nums,int start,int end){
        if(start == end) return nums[start];
        vector<int> dp(nums.size(),0);
        dp[start] = nums[start];
        dp[start+1] = max(nums[start+1],nums[start]);  
        for(int i=start+2;i<=end;i++){
            dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        }     
        return dp[end];
    }
    int rob(vector<int>& nums) {
        if(nums.size() == 1) return nums[0];
        if(nums.size() == 2) return nums[0]<nums[1] ? nums[1] : nums[0];
        int result1 = robRange(nums,0,nums.size()-2);
        int result2 = robRange(nums,1,nums.size()-1);
        return max(result1,result2);

    }
};

问题3:337. 打家劫舍 III - 力扣(LeetCode)

思路:这个题用的是对树的递归,代码如下:

cpp 复制代码
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        int val1 = cur->val + left[0] + right[0];
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};
相关推荐
SWHL几秒前
rapidocr v3.0.0发布(集成PP-OCRv5)
算法
zc.ovo31 分钟前
图论刷题1
算法·深度优先·图论
瓦特what?36 分钟前
C++中实现随机数(超详细!)
开发语言·c++·windows·算法
Humbunklung1 小时前
Rust 变量与可变性
开发语言·算法·rust
Angel Q.2 小时前
PnP(Perspective-n-Point)算法 | 用于求解已知n个3D点及其对应2D投影点的相机位姿
数码相机·算法·3d·pnp
Joern-Lee2 小时前
机器学习算法:逻辑回归
人工智能·算法·机器学习·逻辑回归
敲键盘的小夜猫2 小时前
Retrievers检索器+RAG文档助手项目实战
java·数据库·算法
L_1421906872 小时前
数据结构之排序
数据结构·算法·排序算法
zyq~2 小时前
【课堂笔记】标签传播算法Label Propagation Algorithm(LPA)
人工智能·笔记·算法·机器学习·概率论·lpa·半监督学习
白熊1882 小时前
【机器学习基础】机器学习入门核心算法:多分类与多标签分类算法
算法·机器学习·分类