代码随想录算法训练营Day48 || ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

问题1:198. 打家劫舍 - 力扣(LeetCode)

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你不触动警报装置的情况下,一夜之内能够偷窃到的最高金额。

思路:该题逻辑关系较为简单,dp[j]表示到j点时的最大值,代码如下:

cpp 复制代码
class Solution {
public:
    int rob(vector<int>& nums) {
        if(nums.size()==1) return nums[0];
        if(nums.size()==2) return (nums[0]<nums[1] ? nums[1] : nums[0]);
        vector<int> dp(nums.size()+1,0);
        dp[0] = nums[0];
        dp[1] = nums[1];
        for(int i=2;i<nums.size();i++){
            if(i >= 3) dp[i] = max(max(dp[i-1],nums[i]+dp[i-2]),nums[i]+nums[i-3]);
            else dp[i] = max(dp[i-1],nums[i]+dp[i-2]);
        }
        return dp[nums.size()-1];
    }
};

问题2:213. 打家劫舍 II - 力扣(LeetCode)

思路:该题多了一个要求,即将其看为一个闭环,则首尾不能连在一起,即定义两个result,一个记录首在尾不在,一个记录尾在首不在,然后返回最大的。代码如下:

cpp 复制代码
class Solution {
public:
    int robRange(vector<int>& nums,int start,int end){
        if(start == end) return nums[start];
        vector<int> dp(nums.size(),0);
        dp[start] = nums[start];
        dp[start+1] = max(nums[start+1],nums[start]);  
        for(int i=start+2;i<=end;i++){
            dp[i] = max(dp[i-1],dp[i-2]+nums[i]);
        }     
        return dp[end];
    }
    int rob(vector<int>& nums) {
        if(nums.size() == 1) return nums[0];
        if(nums.size() == 2) return nums[0]<nums[1] ? nums[1] : nums[0];
        int result1 = robRange(nums,0,nums.size()-2);
        int result2 = robRange(nums,1,nums.size()-1);
        return max(result1,result2);

    }
};

问题3:337. 打家劫舍 III - 力扣(LeetCode)

思路:这个题用的是对树的递归,代码如下:

cpp 复制代码
class Solution {
public:
    int rob(TreeNode* root) {
        vector<int> result = robTree(root);
        return max(result[0], result[1]);
    }
    vector<int> robTree(TreeNode* cur) {
        if (cur == NULL) return vector<int>{0, 0};
        vector<int> left = robTree(cur->left);
        vector<int> right = robTree(cur->right);
        int val1 = cur->val + left[0] + right[0];
        int val2 = max(left[0], left[1]) + max(right[0], right[1]);
        return {val2, val1};
    }
};
相关推荐
那个村的李富贵1 天前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿1 天前
Scaled Dot-Product Attention 分数计算 C++
算法
琹箐1 天前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia11 天前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了1 天前
数据结构之树(Java实现)
java·算法
算法备案代理1 天前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.1 天前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦1 天前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总1 天前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow68891 天前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法