【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组

称为 n n n 元齐次线性方程组。

方程组

称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

令 α 1 = ( a 11 , a 21 , ... , a m 1 ) T , α 2 = ( a 12 , a 22 , ... , a m 2 ) T , ... , α n = ( a 1 n , a 2 n , ... , a m n ) T , b = ( b 1 , b 2 , ... , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,...,am1)T,α2=(a12,a22,...,am2)T,...,αn=(a1n,a2n,...,amn)T,b=(b1,b2,...,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2+⋯+xnαn=0(1.1) x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2+⋯+xnαn=b(2.1)

令 X = ( x 1 , x 2 , ... , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,...,xn)T ,矩阵 A = [ α 1 , α 2 , ... , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,...,αn] ,即

则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=0(1.2) A X = b ( 2.2 ) AX=b(2.2) AX=b(2.2)


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性无关 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性相关 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A| = 0. ∣A∣=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A|=0. ∣A∣=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , ... , k s k_1,k_2,\dots,k_s k1,k2,...,ks 为任意常数。
  2. 设 η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2+⋯+ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. 设 η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1−η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2+⋯+ks=1.
  5. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2+⋯+ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

相关推荐
野渡拾光19 小时前
【考研408数据结构-05】 串与KMP算法:模式匹配的艺术
数据结构·考研·算法
点云SLAM2 天前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
岑梓铭2 天前
考研408《计算机组成原理》复习笔记,第五章(1)——CPU功能和结构
笔记·考研·408·计算机组成原理·计组
酌沧3 天前
大模型的底层运算线性代数
线性代数
ankleless3 天前
数据结构(03)——线性表(顺序存储和链式存储)
数据结构·考研·链表·顺序表·线性表
岑梓铭3 天前
考研408《计算机组成原理》复习笔记,第五章(2)——CPU指令执行过程
笔记·考研·408·计算机组成原理·计组
老歌老听老掉牙3 天前
SymPy 矩阵到 NumPy 数组的全面转换指南
python·线性代数·矩阵·numpy·sympy
岑梓铭4 天前
考研408《计算机组成原理》复习笔记,第五章(3)——CPU的【数据通路】
笔记·考研·408·计算机组成原理·计组
图灵学术计算机论文辅导5 天前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
易木木木响叮当6 天前
有限元方法中的数值技术:行列式、求逆、矩阵方程
线性代数·矩阵