【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组

称为 n n n 元齐次线性方程组。

方程组

称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

令 α 1 = ( a 11 , a 21 , ... , a m 1 ) T , α 2 = ( a 12 , a 22 , ... , a m 2 ) T , ... , α n = ( a 1 n , a 2 n , ... , a m n ) T , b = ( b 1 , b 2 , ... , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,...,am1)T,α2=(a12,a22,...,am2)T,...,αn=(a1n,a2n,...,amn)T,b=(b1,b2,...,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2+⋯+xnαn=0(1.1) x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2+⋯+xnαn=b(2.1)

令 X = ( x 1 , x 2 , ... , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,...,xn)T ,矩阵 A = [ α 1 , α 2 , ... , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,...,αn] ,即

则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=0(1.2) A X = b ( 2.2 ) AX=b(2.2) AX=b(2.2)


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性无关 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性相关 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A| = 0. ∣A∣=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A|=0. ∣A∣=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , ... , k s k_1,k_2,\dots,k_s k1,k2,...,ks 为任意常数。
  2. 设 η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2+⋯+ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. 设 η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1−η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2+⋯+ks=1.
  5. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2+⋯+ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

相关推荐
njxiejing3 小时前
考研408计算机网络2023-2024年第33题解析
计算机网络·考研
云手机掌柜3 小时前
下一代社媒运营工具:亚矩阵云手机集成AIGC与数字人技术引领内容革命
大数据·线性代数·智能手机·矩阵·aigc
老华带你飞13 小时前
考研论坛平台|考研论坛小程序系统|基于java和微信小程序的考研论坛平台小程序设计与实现(源码+数据库+文档)
java·vue.js·spring boot·考研·小程序·毕设·考研论坛平台小程序
自我陶醉@19 小时前
计算机网络---网络体系结构
网络·计算机网络·考研·智能路由器·408
索迪迈科技21 小时前
算法题(203):矩阵最小路径和
线性代数·算法·矩阵
没书读了1 天前
考研复习-计算机网络-第四章-网络层
计算机网络·考研
Hi202402172 天前
使用 Apollo TransformWrapper 生成相机到各坐标系的变换矩阵
数码相机·线性代数·矩阵·自动驾驶·apollo
岑梓铭2 天前
考研408《计算机组成原理》复习笔记,第六章(1)——总线概念
笔记·考研·408·计算机组成原理·计组
岑梓铭2 天前
计算机网络第四章(4)——网络层《ARP协议》
网络·笔记·tcp/ip·计算机网络·考研·408
君名余曰正则2 天前
机器学习实操项目01——Numpy入门(基本操作、数组形状操作、复制与试图、多种索引技巧、线性代数)
线性代数·机器学习·numpy