【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

文章目录


引言

继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O


一、线性方程组的基本概念与表达形式

方程组

称为 n n n 元齐次线性方程组。

方程组

称为 n n n 元非齐次线性方程组。

方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。

方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线性方程组的基本形式。

令 α 1 = ( a 11 , a 21 , ... , a m 1 ) T , α 2 = ( a 12 , a 22 , ... , a m 2 ) T , ... , α n = ( a 1 n , a 2 n , ... , a m n ) T , b = ( b 1 , b 2 , ... , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,...,am1)T,α2=(a12,a22,...,am2)T,...,αn=(a1n,a2n,...,amn)T,b=(b1,b2,...,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2+⋯+xnαn=0(1.1) x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2+⋯+xnαn=b(2.1)

令 X = ( x 1 , x 2 , ... , x n ) T X=(x_1,x_2,\dots,x_n)^T X=(x1,x2,...,xn)T ,矩阵 A = [ α 1 , α 2 , ... , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,...,αn] ,即

则方程组(I)(II)可表示为如下矩阵形式: A X = 0 ( 1.2 ) AX=0(1.2) AX=0(1.2) A X = b ( 2.2 ) AX=b(2.2) AX=b(2.2)


二、线性方程组解的基本定理

其实就是前面我们在学向量时就已经总结过的,矩阵、向量和线性方程组解的关系,传送门

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性无关 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ 向量组 α 1 , α 2 , ... , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,...,αn 线性相关 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 齐次方程组只有零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A| = 0. ∣A∣=0.

对于非齐次方程组解的情况,我们可对有解的情况进一步讨论。

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ r ( A ) = n . r(A)=n. r(A)=n.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ r ( A ) < n . r(A)<n. r(A)<n.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

特别地,如果系数矩阵 A A A 为 n n n 阶方阵,还有以下结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
    • 非齐次方程组有唯一解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ ≠ 0. |A| \ne 0. ∣A∣=0.
    • 非齐次方程组有无数解 ⇔ \Leftrightarrow ⇔ ∣ A ∣ = 0. |A|=0. ∣A∣=0.
  • 非齐次方程组无解 ⇔ \Leftrightarrow ⇔ r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

在学向量时就已经讨论了矩阵、向量和方程组解的关系的话,现在来学就会非常轻松。

对于系数矩阵是方阵的方程组,无非就是将行列式和秩联系了起来。如果矩阵的秩那一部分学得到位,也不是什么难点。因此如果要记忆就记忆秩的关系就好,行列式的结论自然能想到。


三、线性方程组解的结构

  1. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解,其中 k 1 , k 2 , ... , k s k_1,k_2,\dots,k_s k1,k2,...,ks 为任意常数。
  2. 设 η 0 \pmb{\eta_0} η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一个解, X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的一组解,则 k 1 X 1 + k 2 X 2 + ⋯ + k s X s + η 0 k_1X_1+k_2X_2+\dots +k_sX_s+\pmb{\eta_0} k1X1+k2X2+⋯+ksXs+η0 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解。
  3. 设 η 1 , η 2 \pmb{\eta_1,\eta_2} η1,η2 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的两个解,则 η 1 − η 2 \pmb{\eta_1-\eta_2} η1−η2 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解。
  4. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 也为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 1. k_1+k_2+\dots+k_s=1. k1+k2+⋯+ks=1.
  5. 设 X 1 , X 2 , ... , X s \pmb{X_1,X_2,\dots,X_s} X1,X2,...,Xs 为非齐次线性方程组 A X = b \pmb{AX=b} AX=b 的一组解,若 k 1 X 1 + k 2 X 2 + ⋯ + k s X s k_1X_1+k_2X_2+\dots +k_sX_s k1X1+k2X2+⋯+ksXs 为齐次线性方程组 A X = 0 \pmb{AX=0} AX=0 的解的充要条件是 k 1 + k 2 + ⋯ + k s = 0. k_1+k_2+\dots+k_s=0. k1+k2+⋯+ks=0.

是不是有点熟悉,特别像我们在微分方程中学的关于高阶线性微分方程的解的结构。

  1. 齐次解线性组合仍为齐次解。
  2. 齐次解 + 非齐次解为非齐次解。
  3. 非齐次解相减为齐次解。
  4. 非齐次解线性组合,系数之和为 1 才是非齐次解。
  5. 非齐次解线性组合,系数之和为 0 才是齐次解。

写在最后

线性方程组还有些内容,是关于计算的,我们放在后面来细说!

相关推荐
大千AI助手5 小时前
Frobenius范数:矩阵分析的万能度量尺
人工智能·神经网络·线性代数·矩阵·矩阵分解·l2范数·frobenius范数
会编程是什么感觉...7 小时前
数学 - 基础线性代数
线性代数
岑梓铭8 小时前
《考研408数据结构》第六章(5.1+5.2+5.3树、二叉树、线索二叉树)复习笔记
数据结构·笔记·考研·408·1024程序员节
dingzd951 天前
全平台内容排期与矩阵玩法
人工智能·线性代数·矩阵·web3·facebook·tiktok·instagram
陈苏同学1 天前
笔记1.4:机器人学的语言——三维空间位姿描述 (旋转矩阵 - 齐次变换矩阵 - 欧拉角 - 四元数高效表示旋转)
笔记·线性代数·算法·机器人
岑梓铭1 天前
考研408《计算机组成原理》复习笔记,第五章(5)——CPU的【指令流水线(含中断)】
笔记·考研·408·计算机组成原理·计组
前端世界1 天前
从零实现一个可加减的Matrix矩阵类:支持索引、相等判断与实际场景应用
线性代数·矩阵
蒙奇D索大2 天前
【数据结构】数据结构核心考点:AVL树删除操作详解(附平衡旋转实例)
数据结构·笔记·考研·学习方法·改行学it·1024程序员节
qq_ddddd2 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
岑梓铭2 天前
考研408《操作系统》复习笔记,第二章《2.3 进程调度》
笔记·考研·操作系统·os