从零开始搭建并运行mmsegmentation

安装:

Step 1:创建Conda 环境并激活之

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2:CUDA版本选择,及安装Pytorch

关于设备GPU的cuda版本,根据如下的选择原则:

  • 对于Ampere架构的NVIDIA的GPU,例如GeForce 30系列核NVIDIA A100,必须安装CUDA11。
  • 对于旧版的NVIDIA GPUS,CUDA 11 是向下兼容的,但是 CUDA10.2会更轻量化并且表现更好的性能

确定好cuda版本后,进入Torch官网选择对应版本的Pytorch进行安装

Step 3:安装 MMCV using MIM.

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 4:安装 MMSegmentation.

git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
# '-v' means verbose, or more output
# '-e' means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.

验证:

Step 1. We need to download config and checkpoint files.下载config和checkpoint 文件

mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

Step 2. Verify the inference demo.验证推理demo

Option (a). If you install mmsegmentation from source, just run the following command.

方式(a)如果你从源码安装mmsegmentation,只需要运行下面的命令

复制代码
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

You will see a new image result.jpg on your current folder, where segmentation masks are covered on all objects.

你如果看到了一个新图片result.jpg在你当前文件夹,说明安装成功了。(运行时,可能会有一些warning,但不影响结果的生成)

相关推荐
车载诊断技术14 分钟前
基于新一代电子电器架构的SOA服务设计方法
人工智能·架构·汽车·计算机外设·ecu故障诊断指南
Luzem031916 分钟前
使用朴素贝叶斯对自定义数据集进行分类
人工智能·机器学习
小菜鸟博士17 分钟前
手撕Vision Transformer -- Day1 -- 基础原理
人工智能·深度学习·学习·算法·面试
找方案31 分钟前
智慧城市(城市大脑)建设方案
人工智能·智慧城市·城市大脑
老艾的AI世界37 分钟前
AI定制祝福视频,广州塔、动态彩灯、LED表白,直播互动新玩法(附下载链接)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·ai视频·ai视频生成·ai视频制作
灰灰老师1 小时前
数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)
人工智能·算法·机器学习·数据挖掘·数据分析·kmeans·rapidminer
kyle~1 小时前
机器学习--概览
人工智能·机器学习
追求源于热爱!2 小时前
记4(可训练对象+自动求导机制+波士顿房价回归预测
图像处理·人工智能·算法·机器学习·回归
前端达人2 小时前
「AI学习笔记」深度学习进化史:从神经网络到“黑箱技术”(三)
人工智能·笔记·深度学习·神经网络·学习
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力
数据库·论文阅读·人工智能·chatgpt·数据分析·prompt