从零开始搭建并运行mmsegmentation

安装:

Step 1:创建Conda 环境并激活之

复制代码
conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2:CUDA版本选择,及安装Pytorch

关于设备GPU的cuda版本,根据如下的选择原则:

  • 对于Ampere架构的NVIDIA的GPU,例如GeForce 30系列核NVIDIA A100,必须安装CUDA11。
  • 对于旧版的NVIDIA GPUS,CUDA 11 是向下兼容的,但是 CUDA10.2会更轻量化并且表现更好的性能

确定好cuda版本后,进入Torch官网选择对应版本的Pytorch进行安装

Step 3:安装 MMCV using MIM.

复制代码
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 4:安装 MMSegmentation.

复制代码
git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
# '-v' means verbose, or more output
# '-e' means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.

验证:

Step 1. We need to download config and checkpoint files.下载config和checkpoint 文件

复制代码
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

Step 2. Verify the inference demo.验证推理demo

Option (a). If you install mmsegmentation from source, just run the following command.

方式(a)如果你从源码安装mmsegmentation,只需要运行下面的命令

复制代码
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

You will see a new image result.jpg on your current folder, where segmentation masks are covered on all objects.

你如果看到了一个新图片result.jpg在你当前文件夹,说明安装成功了。(运行时,可能会有一些warning,但不影响结果的生成)

相关推荐
zhaodiandiandian14 小时前
从跟跑到领跑 开源AI开启中国时间的产业变革
人工智能·开源
weixin_4640780714 小时前
环境配置。
人工智能·深度学习
黑客思维者14 小时前
机器学习012:监督学习【回归算法】(对比)-- AI预测世界的“瑞士军刀”
人工智能·学习·机器学习·回归·逻辑回归
*星星之火*14 小时前
【大白话 AI 答疑】第9篇 深入浅出:sigmoid函数公式设计原理——为何是$e^{-x}$而非$e^x$
人工智能·机器学习
Java后端的Ai之路14 小时前
【AI编程工具】-CodeBuddy设置鼠标配合快捷键放大字体
人工智能·aigc·ai编程·codebuddy
龙腾AI白云14 小时前
DNN案例一步步构建深层神经网络(4)
人工智能
爱笑的眼睛1114 小时前
超越翻转与裁剪:面向生产级AI的数据增强深度实践与多模态演进
java·人工智能·python·ai
百泰派克生物科技15 小时前
N端测序质谱分析
人工智能·科研·生物信息学分析·生化学
码上掘金15 小时前
基于YOLO与大语言模型的中医智能舌诊系统
人工智能·yolo·语言模型