从零开始搭建并运行mmsegmentation

安装:

Step 1:创建Conda 环境并激活之

复制代码
conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2:CUDA版本选择,及安装Pytorch

关于设备GPU的cuda版本,根据如下的选择原则:

  • 对于Ampere架构的NVIDIA的GPU,例如GeForce 30系列核NVIDIA A100,必须安装CUDA11。
  • 对于旧版的NVIDIA GPUS,CUDA 11 是向下兼容的,但是 CUDA10.2会更轻量化并且表现更好的性能

确定好cuda版本后,进入Torch官网选择对应版本的Pytorch进行安装

Step 3:安装 MMCV using MIM.

复制代码
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 4:安装 MMSegmentation.

复制代码
git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
# '-v' means verbose, or more output
# '-e' means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.

验证:

Step 1. We need to download config and checkpoint files.下载config和checkpoint 文件

复制代码
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

Step 2. Verify the inference demo.验证推理demo

Option (a). If you install mmsegmentation from source, just run the following command.

方式(a)如果你从源码安装mmsegmentation,只需要运行下面的命令

复制代码
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

You will see a new image result.jpg on your current folder, where segmentation masks are covered on all objects.

你如果看到了一个新图片result.jpg在你当前文件夹,说明安装成功了。(运行时,可能会有一些warning,但不影响结果的生成)

相关推荐
whaosoft-1431 小时前
51c自动驾驶~合集7
人工智能
刘晓倩4 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋5 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
绝顶大聪明8 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
加百力9 小时前
AI助手竞争白热化,微软Copilot面临ChatGPT的9亿下载挑战
人工智能·microsoft·copilot
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
香蕉可乐荷包蛋10 小时前
AI算法之图像识别与分类
人工智能·学习·算法
张较瘦_10 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能