从零开始搭建并运行mmsegmentation

安装:

Step 1:创建Conda 环境并激活之

复制代码
conda create --name openmmlab python=3.8 -y
conda activate openmmlab

Step 2:CUDA版本选择,及安装Pytorch

关于设备GPU的cuda版本,根据如下的选择原则:

  • 对于Ampere架构的NVIDIA的GPU,例如GeForce 30系列核NVIDIA A100,必须安装CUDA11。
  • 对于旧版的NVIDIA GPUS,CUDA 11 是向下兼容的,但是 CUDA10.2会更轻量化并且表现更好的性能

确定好cuda版本后,进入Torch官网选择对应版本的Pytorch进行安装

Step 3:安装 MMCV using MIM.

复制代码
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

Step 4:安装 MMSegmentation.

复制代码
git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .
# '-v' means verbose, or more output
# '-e' means installing a project in editable mode,
# thus any local modifications made to the code will take effect without reinstallation.

验证:

Step 1. We need to download config and checkpoint files.下载config和checkpoint 文件

复制代码
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

Step 2. Verify the inference demo.验证推理demo

Option (a). If you install mmsegmentation from source, just run the following command.

方式(a)如果你从源码安装mmsegmentation,只需要运行下面的命令

复制代码
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

You will see a new image result.jpg on your current folder, where segmentation masks are covered on all objects.

你如果看到了一个新图片result.jpg在你当前文件夹,说明安装成功了。(运行时,可能会有一些warning,但不影响结果的生成)

相关推荐
金融小师妹6 分钟前
多因子AI回归揭示通胀-就业背离,黄金价格稳态区间的时序建模
大数据·人工智能·算法
tangjunjun-owen6 分钟前
RT-DETRv2 中的坐标回归机制深度解析:为什么用 `sigmoid(inv_sigmoid(ref) + delta)` 而不是除以图像尺寸?
人工智能·loss·rt-detrv2
deephub15 分钟前
机器人逆运动学进阶:李代数、矩阵指数与旋转流形计算
人工智能·机器学习·矩阵·机器人·李群李代数
赴33524 分钟前
图像拼接案例,抠图案例
人工智能·python·计算机视觉
Monkey的自我迭代29 分钟前
SIFT特征匹配实战:KNN算法实现指纹认证
人工智能·opencv·计算机视觉
明月照山海-31 分钟前
机器学习周报十三
人工智能·机器学习·概率论
从零开始学习人工智能34 分钟前
机器学习模型可信度与交叉验证:通俗讲解
人工智能·机器学习
wL魔法师42 分钟前
【LLM】大模型训练中的稳定性问题
人工智能·pytorch·深度学习·llm
IT_陈寒43 分钟前
Vite 5.0重磅升级:8个性能优化秘诀让你的构建速度飙升200%!🚀
前端·人工智能·后端
max50060044 分钟前
OpenSTL PredRNNv2 模型复现与自定义数据集训练
开发语言·人工智能·python·深度学习·算法