字节前端实习的两道算法题,看看强度如何

最长严格递增子序列

题目描述

给你一个整数数组nums,找到其中最长严格递增子序列 的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例:

输入:nums = [2,1,6,3,5,4]

输出:3

解释:最长递增子序列是 [1,3,4],因此长度为 3。

思路

这道题要求最长上升子序列的长度,可以使用动态规划或贪心+二分查找两种方法来解决。

  1. 动态规划

    定义状态:dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

    状态转移方程:对于第i个元素,枚举其前面的元素j,如果nums[i] > nums[j],则dp[i] = dp[j] + 1。同时,在每次更新dp[i]时,更新ans为其最大值。

  2. 贪心+二分查找

    定义一个数组d,d[i]记录长度为i的上升子序列的末尾元素的最小值。对于一个新的元素num[i],如果num[i]大于d[len],说明可以扩展当前的最长上升子序列,直接将其加入到d中;否则在d中查找第一个大于等于num[i]的元素位置pos,用num[i]替换它,使得可以扩展更长的上升子序列。

两种方法的时间复杂度分别为O(n^2)和O(nlogn),空间复杂度都是O(n)。

代码

js 复制代码
// 方法一:动态规划:时间复杂度O(n^2) 空间复杂度O(n)
var lengthOfLIS = function(nums) {
  if(nums.length === 0) return 0

  const dp = new Array(nums.length).fill(1)

  let ans = 1;
  for(let i = 1 ; i < nums.length; i ++) {
    for(let j = 0 ; j < i ; j ++) {
        if(nums[i] > nums[j]) {
            dp[i] = Math.max(dp[i],dp[j] + 1);
        }
    }
    ans = Math.max(dp[i],ans);
  }
  console.log(dp);
  return ans;
}; 

// 方法二:贪心+二分查找:时间复杂度O(nlogn) 空间复杂度O(n)
var lenghtOfLIS = function(nums) {
  let n = nums.length;
  if(n === 0) return 0;

  let d = new Array(n + 1).fill(0);
  let len = 1;
  d[len] = nums[0];
  for(let i = 1; i < n ; i ++) {
    if(num[i] > d[len]) {
      d[++len] = nums[i];
    } else {
      let l = 1 , r = len , pos = 0;
      while(l <= r) {
        let mid = (l + r) >> 1;
        if(d[mid] < num[i]) {
          pos = mid;
          l = mid + 1;
        } else {
          r = mid - 1;
        }
      }
      d[pos + 1] = nums[i];
    }
  }
  return len;
}

路径总和 II

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

思路

我们可以采用深度优先搜索的方式,枚举每一条从根节点到叶子节点的路径。当我们遍历到叶子节点,且此时路径和恰为目标和时,我们就找到了一条满足条件的路径。

代码

js 复制代码
var pathSum = function(root, target) {
    let ans = [],path = [];
    let dfs = (root,target) => {
        if(!root) return;

        path.push(root.val);
        target -= root.val;
        if(root.left === null && root.right === null && target === 0) {
            ans.push([...path]);
        }
        dfs(root.left,target);
        dfs(root.right,target);
        path.pop(root.val);
    }
    dfs(root,target);
    return ans;
};
相关推荐
wearegogog12320 小时前
基于 MATLAB 的卡尔曼滤波器实现,用于消除噪声并估算信号
前端·算法·matlab
一只小小汤圆21 小时前
几何算法库
算法
Drawing stars21 小时前
JAVA后端 前端 大模型应用 学习路线
java·前端·学习
品克缤21 小时前
Element UI MessageBox 增加第三个按钮(DOM Hack 方案)
前端·javascript·vue.js
Evand J21 小时前
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
开发语言·算法·matlab
小二·21 小时前
Python Web 开发进阶实战:性能压测与调优 —— Locust + Prometheus + Grafana 构建高并发可观测系统
前端·python·prometheus
小沐°21 小时前
vue-设置不同环境的打包和运行
前端·javascript·vue.js
leo__52021 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
忆锦紫21 小时前
图像增强算法:Gamma映射算法及MATLAB实现
开发语言·算法·matlab
t1987512821 小时前
基于自适应Chirplet变换的雷达回波微多普勒特征提取
算法