(笔记四)利用opencv识别标记视频中的目标

预操作:

通过cv2将视频的某一帧图片转为HSV模式,并通过鼠标获取对应区域目标的HSV值,用于后续的目标识别阈值区间的选取

``

python 复制代码
img = cv.imread(r"D:\data\123.png")
img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
plt.figure(1), plt.imshow(img)
plt.show()

(1)将视频中识别的目标掩膜成红色

python 复制代码
end_frame[mask > 0] = [0, 0, 255]

(2)利用cv库读取显示原始视频

(3)在HSV阈值分割识别的视频目标

python 复制代码
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
# 定义分割黑色的上下区间,其代表的是目标物体的hsv空间内的最小值和最大值
low = np.array([60, 60, 60])
up = np.array([130, 120, 120])
mask = cv.inRange(hsv, low, up)        

(4)按位与运算之后的视频目标(目标的真实色彩)

python 复制代码
# 进行按位运算,白色的变为frame原来的颜色,其他还是黑色
res = cv.bitwise_and(frame, frame, mask=mask)

(5)主代码(已经给出解释)

python 复制代码
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: LIFEI
@time: 2023/8/29 14:39 
@file: test4.py
@project: pythonProject
@describe: TODO
@# -------------------------------------------------(one)----------------------------------------------
@# -------------------------------------------------(two)----------------------------------------------
"""

# -------------------------------------------------(one)----------------------------------------------
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt


# img = cv.imread(r"D:\data\123.png")
# img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
# plt.figure(1), plt.imshow(img)
# plt.show()

def identify(path, point):
    # 创建一个video基类
    cap = cv.VideoCapture(path)
    # 当cap被打开时开始循环
    while cap.isOpened():
        #  读取视频
        ret, frame = cap.read()
        # 拷贝图像,赋值给end_frame
        end_frame = np.copy(frame)
        # 将视频的BGR空间转换为HSV空间
        hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
        # 定义分割黑色的上下区间,其代表的是目标物体的hsv空间内的最小值和最大值
        low = np.array([60, 60, 60])
        up = np.array([130, 120, 120])
        # 类似与阈值分割,就是将上述的区间类的物体改成白色,其他改为黑色
        mask = cv.inRange(hsv, low, up)
        # 进行按位运算,白色的变为frame原来的颜色,其他还是黑色
        res = cv.bitwise_and(frame, frame, mask=mask)
        # 将end_frame中的mask白色区域变成红色
        end_frame[mask > 0] = [0, 0, 255]
        # 判断帧率是否存在,若是不存在直接退出
        if not ret:
            break
        # 判断输出
        if point == 1:
            cv.imshow("frame", frame)
        elif point == 2:
            cv.imshow("mask", mask)
        elif point == 3:
            cv.imshow("avi", res)
        else:
            cv.imshow("end_frame", end_frame)
        # 这里理解为视频的快慢,1表示原始速度,越大越慢,按'q'退出显示
        if cv.waitKey(15) & 0xFF == ord('q'):
            break

    cv.waitKey(0)
    # 释放
    cap.release()
    cv.destroyAllWindows()


if __name__ == '__main__':
    # 视频的路径
    filepath = r"D:\data\plane.avi"
    # 访问输入的数值,后续循环要用
    value = input('请输入一个数字(1表示ori,2表示mask,3表示res,4表示end_frame):')
    # 转为整型
    value = int(value)
    # 开始操作
    identify(filepath, value)

# -------------------------------------------------(two) - -------------------------------------------
相关推荐
Gession-杰1 小时前
OpenCV图像梯度、边缘检测、轮廓绘制、凸包检测大合集
人工智能·opencv·计算机视觉
好心的小明2 小时前
【深度之眼机器学习笔记】04-01-决策树简介、熵,04-02-条件熵及计算举例,04-03-信息增益、ID3算法
笔记·算法·决策树
水军总督3 小时前
OpenCV+Python
python·opencv·计算机视觉
欧阳小猜4 小时前
OpenCV-图像预处理➁【图像插值方法、边缘填充策略、图像矫正、掩膜应用、水印添加,图像的噪点消除】
人工智能·opencv·计算机视觉
旭日东升的xu.4 小时前
OpenCV(04)梯度处理,边缘检测,绘制轮廓,凸包特征检测,轮廓特征查找
人工智能·opencv·计算机视觉
zhaoyang03014 小时前
vue3笔记(2)自用
前端·javascript·笔记
蒙塔基的钢蛋儿5 小时前
将nuttx构建脚本的文件夹复制修改为符号链接
笔记
墨染枫6 小时前
pytorch学习笔记-使用DataLoader加载固有Datasets(CIFAR10),使用tensorboard进行可视化
pytorch·笔记·学习
jarreyer7 小时前
【图像分割】记录1:unet, yolov8_seg
人工智能·笔记·计算机视觉