数学建模:层次分析法

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

层次分析法

步骤描述

  1. 将问题条理化,层次化,构建出一个有层次的结构模型。层次分为三类:目标层,准则(指标)层,方案层
  2. 比较指标层中不同指标之间的相对重要程度,并且构建一个成对比较矩阵
    1. 自行判断两个不同指标的相对重要程度。
    2. 如果指标1重要程度大于指标2,并且赋予一个重要程度为3,因此得到其指标1的值为3,
    3. 同理指标2的重要程度小于指标1(不能存在矛盾),因此相对的指标2的值为 1 3 \frac{1}{3} 31
    4. 因此任意两个指标重要度之间存在的关系为: a i j > 0 , a i j = 1 a j i , i , j ∈ ( 1 , 2 , 3 , . . . n ) a_{ij}>0,a_{ij} = \frac{1}{a_{ji}},i,j\in(1,2,3,...n) aij>0,aij=aji1,i,j∈(1,2,3,...n)
    5. 接着构建出所有两个指标的这种关系,就可以得到一个关于所有指标两两之间的成对比较矩阵 A n n A_{nn} Ann,其中 n n n 为指标的数量。
  3. 在单一准则下计算指标相对排序的权重,以及进行判断矩阵(成对比较矩阵)的一致性检验
  4. 计算方案层中对于目标层的总排序权重,从而得到评价后的结果。

算法流程

  1. 通过分层与条理化后,我们得到了两两指标之间的成对比较矩阵(判断矩阵):

∣ 1 3 1 1 / 3 1 / 3 1 1 / 2 1 / 5 1 2 1 1 / 3 3 5 5 1 ∣ \left|\begin{array}{cccc}1 & 3 & 1 & 1 / 3 \\1 / 3 & 1 & 1 / 2 & 1 / 5 \\1 & 2 & 1 & 1 / 3 \\3 & 5 & 5 & 1\end{array}\right| 11/313312511/2151/31/51/31

  1. 首先得到判断矩阵的最大特征值对应的特征向量T:

T = [ t 1 t 2 ⋯ t n ] T=\begin{bmatrix}t_1&t_2&\cdots&t_n\end{bmatrix} T=[t1t2⋯tn]

  1. 得到权重向量W:

W = [ w 1 w 2 ⋯ w n ] w i = t i ∑ i = 1 n t i \begin{gathered}W=\begin{bmatrix}w_1&w_2&\cdots&w_n\end{bmatrix}\\\\w_i=\frac{t_i}{\sum_{i=1}^nt_i}\end{gathered} W=[w1w2⋯wn]wi=∑i=1ntiti

  1. 计算一致性指标 C I CI CI

C I = λ max ⁡ − n n − 1 C I=\frac{\lambda_{\max }-n}{n-1} CI=n−1λmax−n

  1. 查找相应的随机平均一致性指标 R I RI RI :如果 n = 5 n = 5 n=5 则表示有五个指标,则 R I = R I ( 1 , 5 ) = 1.12 RI = RI(1,5) = 1.12 RI=RI(1,5)=1.12
  1. 计算**一致性比例CR:**当 C R < 0.10 CR<0.10 CR<0.10 时,一致性接受,否则改矩阵应该适当修改参数。

C R = C I R I CR = \frac{CI}{RI} CR=RICI

  1. 计算评价对象的得分:其中 P P P 为归一化后的原始数据, W W W为权重向量

S c o r e = P ⋅ W Score = P \cdot W Score=P⋅W


完整代码

matlab 复制代码
function [Score,W] = mfunc_levelAnalysis(A,data)
    % 层次分析法:求解每个评价对象的综合得分与对应权重
    % paramts: 
    %      A: 两两指标之间的自定义的成对对角矩阵 Shape: (n,n)
    %      data: 原始数据矩阵,(m,n) m为评价对象,n为评价指标
    % returns:
    %      Score:每个评价对象的综合得分
    %      W: 所有指标的权重
    
    % 成对对角矩阵:A判别矩阵
    % A=[1,3,1,1/3;
    %     1/3,1,1/2,1/5;
    %     1,2,1,1/3;
    %     3,5,3,1];
    [n,~]=size(data);
    %Z=zscore(X);
    Z = data ./ repmat(sum(data.*data) .^ 0.5, n, 1); %矩阵归一化
    
    [n,~]=size(A);
    %求特征值特征向量,找到最大特征值对应的特征向量
    [V,D]=eig(A);
    tzz=max(max(D));     %找到最大的特征值
    c1=find(D(1,:)==tzz);%找到最大的特征值位置
    T=V(:,c1);%最大特征值对应的特征向量
    %赋权重
    W=zeros(n,1);
    for i=1:n
    W(i,1)=T(i,1)/sum(T);
    end
    %一致性检验
    CI=(tzz-n)/(n-1);
    RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
    %判断是否通过一致性检验
    CR=CI/RI(1,n);
    if CR>=0.1
       fprintf('没有通过一致性检验\n');
    else
      fprintf('通过一致性检验\n');
    end
     score=Z*W;
     Score=100*score/max(score);
end

有关成对比较矩阵两两指标之间的的相关重要性的程度参考:

相关推荐
数模竞赛Paid answer8 小时前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
哈听星8 小时前
解非线性方程组
数学建模·matlab
阑梦清川2 天前
数学建模---利用Matlab快速实现机器学习(上)
机器学习·数学建模·matlab·预测算法
Terry_trans4 天前
数学建模经验:主攻美赛CEF题的队伍应该掌握的基础
数学建模
阑梦清川7 天前
数学建模启发式算法篇(一)---遗传算法
算法·数学建模·启发式算法
羊小猪~~9 天前
数学建模(基于Python实现)--灰色关联分析法讲解,含案例
开发语言·python·数学建模
高登先生9 天前
汇聚全球前沿科技产品,北京智能科技产业展览会·世亚智博会
大数据·人工智能·科技·数学建模·能源
Ricciflows9 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
weixin_430153389 天前
硬件在环仿真建模之电路拓扑建模与数学建模
数学建模
CodeCraft Studio10 天前
定性数据分析 (QDA) 软件NVivo V15现已发布!融合AI让数据分析更出色!
大数据·人工智能·算法·数学建模·数据分析