数学建模:层次分析法

🔆 文章首发于我的个人博客:欢迎大佬们来逛逛

层次分析法

步骤描述

  1. 将问题条理化,层次化,构建出一个有层次的结构模型。层次分为三类:目标层,准则(指标)层,方案层
  2. 比较指标层中不同指标之间的相对重要程度,并且构建一个成对比较矩阵
    1. 自行判断两个不同指标的相对重要程度。
    2. 如果指标1重要程度大于指标2,并且赋予一个重要程度为3,因此得到其指标1的值为3,
    3. 同理指标2的重要程度小于指标1(不能存在矛盾),因此相对的指标2的值为 1 3 \frac{1}{3} 31
    4. 因此任意两个指标重要度之间存在的关系为: a i j > 0 , a i j = 1 a j i , i , j ∈ ( 1 , 2 , 3 , . . . n ) a_{ij}>0,a_{ij} = \frac{1}{a_{ji}},i,j\in(1,2,3,...n) aij>0,aij=aji1,i,j∈(1,2,3,...n)
    5. 接着构建出所有两个指标的这种关系,就可以得到一个关于所有指标两两之间的成对比较矩阵 A n n A_{nn} Ann,其中 n n n 为指标的数量。
  3. 在单一准则下计算指标相对排序的权重,以及进行判断矩阵(成对比较矩阵)的一致性检验
  4. 计算方案层中对于目标层的总排序权重,从而得到评价后的结果。

算法流程

  1. 通过分层与条理化后,我们得到了两两指标之间的成对比较矩阵(判断矩阵):

∣ 1 3 1 1 / 3 1 / 3 1 1 / 2 1 / 5 1 2 1 1 / 3 3 5 5 1 ∣ \left|\begin{array}{cccc}1 & 3 & 1 & 1 / 3 \\1 / 3 & 1 & 1 / 2 & 1 / 5 \\1 & 2 & 1 & 1 / 3 \\3 & 5 & 5 & 1\end{array}\right| 11/313312511/2151/31/51/31

  1. 首先得到判断矩阵的最大特征值对应的特征向量T:

T = [ t 1 t 2 ⋯ t n ] T=\begin{bmatrix}t_1&t_2&\cdots&t_n\end{bmatrix} T=[t1t2⋯tn]

  1. 得到权重向量W:

W = [ w 1 w 2 ⋯ w n ] w i = t i ∑ i = 1 n t i \begin{gathered}W=\begin{bmatrix}w_1&w_2&\cdots&w_n\end{bmatrix}\\\\w_i=\frac{t_i}{\sum_{i=1}^nt_i}\end{gathered} W=[w1w2⋯wn]wi=∑i=1ntiti

  1. 计算一致性指标 C I CI CI

C I = λ max ⁡ − n n − 1 C I=\frac{\lambda_{\max }-n}{n-1} CI=n−1λmax−n

  1. 查找相应的随机平均一致性指标 R I RI RI :如果 n = 5 n = 5 n=5 则表示有五个指标,则 R I = R I ( 1 , 5 ) = 1.12 RI = RI(1,5) = 1.12 RI=RI(1,5)=1.12
  1. 计算**一致性比例CR:**当 C R < 0.10 CR<0.10 CR<0.10 时,一致性接受,否则改矩阵应该适当修改参数。

C R = C I R I CR = \frac{CI}{RI} CR=RICI

  1. 计算评价对象的得分:其中 P P P 为归一化后的原始数据, W W W为权重向量

S c o r e = P ⋅ W Score = P \cdot W Score=P⋅W


完整代码

matlab 复制代码
function [Score,W] = mfunc_levelAnalysis(A,data)
    % 层次分析法:求解每个评价对象的综合得分与对应权重
    % paramts: 
    %      A: 两两指标之间的自定义的成对对角矩阵 Shape: (n,n)
    %      data: 原始数据矩阵,(m,n) m为评价对象,n为评价指标
    % returns:
    %      Score:每个评价对象的综合得分
    %      W: 所有指标的权重
    
    % 成对对角矩阵:A判别矩阵
    % A=[1,3,1,1/3;
    %     1/3,1,1/2,1/5;
    %     1,2,1,1/3;
    %     3,5,3,1];
    [n,~]=size(data);
    %Z=zscore(X);
    Z = data ./ repmat(sum(data.*data) .^ 0.5, n, 1); %矩阵归一化
    
    [n,~]=size(A);
    %求特征值特征向量,找到最大特征值对应的特征向量
    [V,D]=eig(A);
    tzz=max(max(D));     %找到最大的特征值
    c1=find(D(1,:)==tzz);%找到最大的特征值位置
    T=V(:,c1);%最大特征值对应的特征向量
    %赋权重
    W=zeros(n,1);
    for i=1:n
    W(i,1)=T(i,1)/sum(T);
    end
    %一致性检验
    CI=(tzz-n)/(n-1);
    RI=[0,0,0.58,0.9,1.12,1.24,1.32,1.41,1.45,1.49,1.52,1.54,1.56,1.58,1.59];
    %判断是否通过一致性检验
    CR=CI/RI(1,n);
    if CR>=0.1
       fprintf('没有通过一致性检验\n');
    else
      fprintf('通过一致性检验\n');
    end
     score=Z*W;
     Score=100*score/max(score);
end

有关成对比较矩阵两两指标之间的的相关重要性的程度参考:

相关推荐
一只小小的土拨鼠19 小时前
2025数维杯秋季赛思路+模型+代码+论文详解(开赛后持续更新)---------2025年第十一届数维杯国际大学生数学建模挑战赛(国际赛)
数学建模
异构算力老群群1 天前
2025 爆火!海市蜃楼优化算法 MSO(Mirage Search Optimization):物理灵感 + 数学建模 + 实战代码,一文吃透前沿群智能算法
数学建模·启发式算法·优化算法·进化计算·海市蜃楼优化算法·群智能优化
极客学术工坊4 天前
2023年第十三届MathorCup高校数学建模挑战赛-C题 电商物流网络包裹应急调运与结构优化问题
数学建模·动态规划·启发式算法
MoRanzhi12035 天前
Python 实现:从数学模型到完整控制台版《2048》游戏
数据结构·python·算法·游戏·数学建模·矩阵·2048
2301_764441336 天前
水星热演化核幔耦合数值模拟
python·算法·数学建模
极客学术工坊6 天前
2023年第二十届五一数学建模竞赛-A题 无人机定点投放问题-基于抛体运动的无人机定点投放问题研究
人工智能·机器学习·数学建模·启发式算法
极客学术工坊7 天前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
人大博士的交易之路7 天前
龙虎榜——20251106
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜
Cathy Bryant8 天前
概率论直觉(一):大数定律
笔记·考研·数学建模
热心网友俣先生8 天前
第六届“大湾区杯”粤港澳金融数学建模竞赛赛题浅析-助攻快速选题
数学建模·金融