基于python+pyqt的opencv汽车分割系统

目录

一、实现和完整UI视频效果展示

主界面:

识别结果界面:

查看分割处理过程图片界面:

二、原理介绍:

加权灰度化

​编辑

二值化

滤波降噪处理

锐化处理

边缘特征提取

图像分割

完整演示视频:

完整代码链接


一、实现和完整UI视频效果展示

主界面:

识别结果界面:

查看分割处理过程图片界面:

历史记录

二、原理介绍:

加权灰度化

图像灰度化的目的是为了简化矩阵,提高运算速度。彩色图片的信息含量过大,而进行图片识别时,其实只需要使用灰度图像里的信息就足够了,所以图像灰度化的目的就是为了提高运算速度

python 复制代码
        # 创建一个与图像大小相同的灰度图像数组
        weight_gray = np.zeros(image.shape[0:2], dtype='uint8')

        # 使用加权平均法将彩色图像转换为灰度图像
        for ii in range(image.shape[0]):
            for jj in range(image.shape[1]):
                r, g, b = image[ii, jj, :]
                weight_gray[ii, jj] = 0.3 * r + 0.59 * g + 0.11 * b

二值化

将图像的像素点和灰度值设置为0或255,将图像呈现出黑白的效果,图像二值化可以使图像中的数据量大大减少,从而凸显出目标的轮廓,也同时方便提取图像中的信息,增加识别的效率

python 复制代码
# 对灰度图像进行二值化处理
T = 30
for y in range(image.shape[1]):
    for x in range(image.shape[0]):
        if weight_gray[x][y] < T:
            weight_gray[x][y] = 0
        else:
            weight_gray[x][y] = 255

滤波降噪处理

图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。调高提高图像的信噪比,使图像的应用特征突出。采用最小值滤波对图像进行降噪处理

python 复制代码
# 对二值化图像进行滤波降噪
n = 3
salt_weight_gray = util.random_noise(weight_gray, mode='salt', rng=None, clip=True)
min_weight_gray = ndimage.minimum_filter(salt_weight_gray, (n, n))

锐化处理

锐化处理的目的是增强图像中目标的细节、边缘、轮廓和其他灰度突变,削弱了灰度变化缓慢的区域。对图像使用拉普拉斯算子进行空间滤波得到拉普拉斯图像,将拉普拉斯图像以一定比例叠加到原始图像,可对原始图像进行拉普拉斯锐化增强,更加突出图像的纹理结构

python 复制代码
# 对灰度图像进行锐化处理
img_laplace = filters.laplace(weight_gray, ksize=3, mask=None)
img_enhance = weight_gray + img_laplace

边缘特征提取

采用LoG边缘检测算子:首先利用二维高斯函数对图像进行低通滤波(先平滑掉噪声),再用Laplace算子进行二阶导数运算进行边缘检测。目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来往往是轮廓

python 复制代码
# 对灰度图像进行高斯平滑和LoG边缘检测
gaussian_weight_gray = gaussian(weight_gray)
edge_LoG = laplace(gaussian_weight_gray)

图像分割

对灰度车辆图像进行了闻值处理,得到二值化车辆图像。然后对二值化车辆图像进行了标记,获取到车辆的连通区域,并计算了它们的面积。在所有连通区域中选取面积最大的,创建一个与二值化车辆图像相同大小的遮罩数组,将面积等于largest area 的连通区域像素置为 1,其余部分为0,最后复制原始图

python 复制代码
# 分割汽车图像
threshold = filters.threshold_otsu(gaussian_weight_gray)
car_binary = gaussian_weight_gray > threshold
car_labels = measure.label(car_binary)
properties = measure.regionprops(car_labels)
areas = [prop.area for prop in properties]

完整演示视频:

无法粘贴视频........

完整代码链接

视频和代码都已上传百度网盘,放在主页置顶文章

相关推荐
hjs_deeplearning17 分钟前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体
kngines40 分钟前
【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
人工智能·数据挖掘·面试题
.30-06Springfield3 小时前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm
xingshanchang5 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons6 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK6 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch7 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch7 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines7 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey7 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导