基于python+pyqt的opencv汽车分割系统

目录

一、实现和完整UI视频效果展示

主界面:

识别结果界面:

查看分割处理过程图片界面:

二、原理介绍:

加权灰度化

​编辑

二值化

滤波降噪处理

锐化处理

边缘特征提取

图像分割

完整演示视频:

完整代码链接


一、实现和完整UI视频效果展示

主界面:

识别结果界面:

查看分割处理过程图片界面:

历史记录

二、原理介绍:

加权灰度化

图像灰度化的目的是为了简化矩阵,提高运算速度。彩色图片的信息含量过大,而进行图片识别时,其实只需要使用灰度图像里的信息就足够了,所以图像灰度化的目的就是为了提高运算速度

python 复制代码
        # 创建一个与图像大小相同的灰度图像数组
        weight_gray = np.zeros(image.shape[0:2], dtype='uint8')

        # 使用加权平均法将彩色图像转换为灰度图像
        for ii in range(image.shape[0]):
            for jj in range(image.shape[1]):
                r, g, b = image[ii, jj, :]
                weight_gray[ii, jj] = 0.3 * r + 0.59 * g + 0.11 * b

二值化

将图像的像素点和灰度值设置为0或255,将图像呈现出黑白的效果,图像二值化可以使图像中的数据量大大减少,从而凸显出目标的轮廓,也同时方便提取图像中的信息,增加识别的效率

python 复制代码
# 对灰度图像进行二值化处理
T = 30
for y in range(image.shape[1]):
    for x in range(image.shape[0]):
        if weight_gray[x][y] < T:
            weight_gray[x][y] = 0
        else:
            weight_gray[x][y] = 255

滤波降噪处理

图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。调高提高图像的信噪比,使图像的应用特征突出。采用最小值滤波对图像进行降噪处理

python 复制代码
# 对二值化图像进行滤波降噪
n = 3
salt_weight_gray = util.random_noise(weight_gray, mode='salt', rng=None, clip=True)
min_weight_gray = ndimage.minimum_filter(salt_weight_gray, (n, n))

锐化处理

锐化处理的目的是增强图像中目标的细节、边缘、轮廓和其他灰度突变,削弱了灰度变化缓慢的区域。对图像使用拉普拉斯算子进行空间滤波得到拉普拉斯图像,将拉普拉斯图像以一定比例叠加到原始图像,可对原始图像进行拉普拉斯锐化增强,更加突出图像的纹理结构

python 复制代码
# 对灰度图像进行锐化处理
img_laplace = filters.laplace(weight_gray, ksize=3, mask=None)
img_enhance = weight_gray + img_laplace

边缘特征提取

采用LoG边缘检测算子:首先利用二维高斯函数对图像进行低通滤波(先平滑掉噪声),再用Laplace算子进行二阶导数运算进行边缘检测。目的就是找到图像中亮度变化剧烈的像素点构成的集合,表现出来往往是轮廓

python 复制代码
# 对灰度图像进行高斯平滑和LoG边缘检测
gaussian_weight_gray = gaussian(weight_gray)
edge_LoG = laplace(gaussian_weight_gray)

图像分割

对灰度车辆图像进行了闻值处理,得到二值化车辆图像。然后对二值化车辆图像进行了标记,获取到车辆的连通区域,并计算了它们的面积。在所有连通区域中选取面积最大的,创建一个与二值化车辆图像相同大小的遮罩数组,将面积等于largest area 的连通区域像素置为 1,其余部分为0,最后复制原始图

python 复制代码
# 分割汽车图像
threshold = filters.threshold_otsu(gaussian_weight_gray)
car_binary = gaussian_weight_gray > threshold
car_labels = measure.label(car_binary)
properties = measure.regionprops(car_labels)
areas = [prop.area for prop in properties]

完整演示视频:

无法粘贴视频........

完整代码链接

视频和代码都已上传百度网盘,放在主页置顶文章

相关推荐
TaoSense11 分钟前
AI应用:电路板设计
人工智能
karlso33 分钟前
深度学习:简介与任务分类总览
人工智能·深度学习·分类
CodeShare1 小时前
RATE:基于LLM的检索增强生成技术提取管道
人工智能·信息检索·大型语言模型
汀、人工智能1 小时前
AI Compass前沿速览:可灵创意工坊、字节Coze Studio&Coze Loop、通义万相2.2 、智谱GLM-4.5、腾讯混元3D世界模型开源
人工智能·大模型
go54631584651 小时前
基于LSTM和GRU的上海空气质量预测研究
图像处理·人工智能·深度学习·神经网络·算法·gru·lstm
AKAMAI1 小时前
借助Early Hints和HarperDB改善网页性能
人工智能
亿坊电商2 小时前
AI 数字人在处理音频时,如何确保声音的自然度?
人工智能·算法·音视频
愚戏师2 小时前
机器学习(重学版)基础篇(概念与评估)
人工智能·机器学习
CodeShare2 小时前
计算机视觉的未来方向:无监督学习与生成模型
计算机视觉·生成模型·无监督学习
我有一计3332 小时前
【算法笔记】6.LeetCode-Hot100-链表专项
人工智能·算法·程序员