(数字图像处理MATLAB+Python)第十章图像分割-第四,五节:分水岭分割和综合案例

文章目录

一:分水岭分割

(1)原理

分水岭分割:图像处理中常用的一种分割方法,它基于图像中灰度或颜色的变化来划分不同的区域。分水岭分割算法的原理是基于地理学上的分水岭概念。将图像看作一个地貌图,在图像中低洼的部分被看作水池,而高处则表示山脉。通过在图像中加入水并让其逐渐充满,当水位上升到高峰时,不同山脉之间的低洼部分就形成了分割边界。其算法步骤如下

  • 预处理:对原始图像进行预处理,包括去噪、平滑和增强等操作,以提高分割结果的准确性
  • 标记区域:通过手动标记或自动选择一些种子像素来指定感兴趣的目标区域和背景区域。这些种子像素可以根据图像的特征进行选择,如明暗度、颜色等
  • 计算距离变换:利用标记区域生成距离变换图,其中每个像素的值表示该像素到最近标记点的距离。距离变换可以将图像中的低洼区域与高处区域进行区分
  • 寻找分割线:根据距离变换图,通过寻找局部最大值点和极小值点来确定分水岭线。这些分水岭线将图像分为不同的区域
  • 分割结果优化:根据具体需求,可以对分割结果进行后处理操作,如合并相邻区域、去除小区域等,以得到更好的分割效果

分水岭分割方法在图像处理领域有着广泛的应用,特别适用于复杂背景下的目标提取和图像分割任务。但它也存在一些问题,例如对噪声敏感,容易产生过分割或欠分割等情况,因此在实际应用中需要结合其他方法进行改进和优化

(2)程序

如下图


matlab实现:

matlab 复制代码
clear,clc,close all;
image=im2double(rgb2gray(imread('bricks.jpg')));
figure,imshow(image),title('原图');
hv=fspecial('prewitt');
hh=hv.';
gv=abs(imfilter(image,hv,'replicate'));
gh=abs(imfilter(image,hh,'replicate'));
% g=sqrt(gv.^2+gh.^2);
g=abs(gv)+abs(gh);
figure,imshow(g),title('梯度图像');
L=watershed(g);
wr=L==0;
figure,imshow(wr),title('分水岭');
image(wr)=0;
figure,imshow(image),title('分割结果');
% imwrite(g,'watergrad.jpg');
% imwrite(wr,'fenshuiling.jpg');
% imwrite(image,'waterresult.jpg');
python 复制代码
import numpy as np
import cv2
import matplotlib.pyplot as plt

# 读取图像
image = cv2.imread('bricks.jpg')
image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image_gray = image_gray.astype(np.float64) / 255.0

# 显示原图
plt.figure()
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('原图')

# 计算梯度
hx = cv2.Sobel(image_gray, cv2.CV_64F, 1, 0, ksize=3)
hy = cv2.Sobel(image_gray, cv2.CV_64F, 0, 1, ksize=3)
gx = np.abs(hx)
gy = np.abs(hy)
gradient = gx + gy

# 显示梯度图像
plt.figure()
plt.imshow(gradient, cmap='gray')
plt.title('梯度图像')

# 分水岭分割
ret, markers = cv2.connectedComponents(cv2.threshold(np.uint8(gradient * 255), 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1])
markers = markers + 1
markers[gradient == 0] = 0
labels = cv2.watershed(image, markers)
segmented = image.copy()
segmented[labels == -1] = [0, 0, 255]

# 显示分水岭结果
plt.figure()
plt.imshow(cv2.cvtColor(segmented, cv2.COLOR_BGR2RGB))
plt.title('分割结果')

plt.show()

二:综合案例:答题卡图像分割

(1)设计思路

要求 :将答题卡分割成不同区域。采用所学基础处理方法实现题目要求
操作

  • 几何校正
  • 裁切
  • 上下区域分割
  • 信息区和答题区分割

(2)各模块设计

主程序

几何校正

裁切

信息区域分割:通过检测边缘来进行分割:canny边缘检测、边缘滤波、边界修复和区域定位四个步骤

答题区分割

(3)代码

matlab 复制代码
    clear,clc,close all;
    RGB=im2double(imread('card1.jpg'));
    figure,imshow(RGB),title('原图');
    adjustI=correction(RGB);

    figure,imshow(adjustI),title('几何校正结果图');
    [cropIu,cropId]=crop(adjustI);
 
    rectup(cropIu);
    rectdown(cropId);
    
    
function out=correction(in)
    bw=prepro(in);
    lines=linedetect(bw,2);
    line1=[lines(1).point1;lines(1).point2];
    line2=[lines(2).point1;lines(2).point2];
    angle1=abs(atan((line1(2,2)-line1(1,2))/(line1(2,1)-line1(1,1)))*180/pi);
    angle2=abs(atan((line2(2,2)-line2(1,2))/(line2(2,1)-line2(1,1)))*180/pi);
    
    if angle1<angle2
        temp=angle1;
        angle1=angle2;
        angle2=temp;
        temp=line1;
        line1=line2;
        line2=temp;   
    end
    first=line1(1,:);    second=line1(2,:);    third=line2(1,:);    fourth=line2(2,:);
    input_points=[first;second;third;fourth];
    
    first(2)=(first(2)+second(2))/2;    second(2)=first(2);
    third(1)=first(1);    fourth(1)=second(1);
    third(2)=(third(2)+fourth(2))/2;    fourth(2)=third(2);
    base_points=[first;second;third;fourth];
    
    tform=cp2tform(input_points,base_points,'projective');
    
    out=1-in(:,:,:);
    out=imtransform(out,tform);  
    out(:,:,:)=1-out(:,:,:);
end
function out=prepro(in)
    bw=1-imbinarize(rgb2gray(in));
    se=strel('square',2);
    out=imopen(bw,se);
end
function [lines,width]=linedetect(bw,n)
    [B,L]=bwboundaries(bw);
    [N,M]=size(bw);
    STATS=regionprops(L,'MajorAxisLength','MinorAxisLength');%统计几何特征
    len=length(STATS);
    for i=1:len          
        if STATS(i).MajorAxisLength<M/2 || STATS(i).MinorAxisLength>10
            L(L==i)=0;
        end
    end
    L(L~=0)=1;
    [B,L]=bwboundaries(L);
    STATS=regionprops(L,'MinorAxisLength');%统计几何特征
    len=length(STATS);
    width=0;
    for i=1:len   
        width=width+STATS(i).MinorAxisLength;
    end
    width=width/len;
    [h,theta,rho]=hough(L,'RhoResolution',0.5,'ThetaResolution',0.5);
    P=houghpeaks(h,n);
    lines=houghlines(L,theta,rho,P);
end

function [out1,out2]=crop(in)
    gray=1-rgb2gray(in);
    sumy=sum(gray,2);
    sumx=sum(gray);
 
    avery=mean(sumy);
    averx=mean(sumx);
    posy=find(sumy>avery);
    posx=find(sumx>averx);
    [C,maxx]=max(sumx);
    out=in(posy(1)-3:posy(end),posx(1)-3:maxx,:);    
    
    bw=prepro(out);
    [N,M]=size(bw);
    [lines,width]=linedetect(bw,2);
    line1=[lines(1).point1;lines(1).point2];
    line2=[lines(2).point1;lines(2).point2];
    if line1(1,2)>line2(1,2)
        temp=line1;
        line1=line2;
        line2=temp;
    end
    left=1;
    right=(line1(2,1)+line2(2,1))/2;
    right=floor(right+(M-right)*2/3);
    top=1;
    middle=(line1(1,2)+line1(2,2))/2;
    bottom=floor((line2(1,2)+line2(2,2))/2-width);
    out1=out(top:middle-width,left:right,:);   
    out2=out(middle+width/2:bottom,left:right,:); 
end

function out=rectup(in)
    out=imresize(in,2,'bilinear');
    gray=rgb2gray(out);       
    bw=edge(gray,'canny');
    [B,L]=bwboundaries(bw);
    STATS=regionprops(L,'MajorAxisLength');%统计几何特征
    len=length(STATS);
    [N,M]=size(gray);
    for i=1:len   
        if STATS(i).MajorAxisLength<M/8
            bw(L==i)=0;
        end
    end
    bw=restore(bw);
    bw=imfill(bw,'holes');
    se=strel('square',3);
    bw=imopen(bw,se);
    [B,L]=bwboundaries(bw);
    STATS=regionprops(L,'BoundingBox');%统计几何特征
    len=length(STATS);
    figure,imshow(out),title('个人信息区定位');
    hold on;
    for i=1:len
        rect=STATS(i).BoundingBox;
        rectangle('position',rect,'edgecolor','b');
    end
end
function out=restore(in)
    [N,M]=size(in);
    for x=2:M-1
        for y=2:N-1
            i=x;  j=y;
            while j<=N-1 && i<=M-1 && i>=2 && j>=2 && in(j,i)~=0
                neighbor=[in(j-1,i-1) in(j-1,i) in(j-1,i+1) in(j,i-1) in(j,i+1) in(j+1,i-1) in(j+1,i) in(j+1,i+1)];
                pos=find(neighbor~=0);
                if size(pos)==1
                    switch pos(1)
                        case 1
                            i=i+1;j=j+1;     
                        case 2
                            j=j+1;
                        case 3
                            i=i-1;j=j+1;
                        case 4
                            i=i+1;
                        case 5
                            i=i-1;
                        case 6
                            i=i+1;j=j-1;
                        case 7
                            j=j-1;
                        case 8
                            i=i-1;j=j-1;
                    end
                    in(j,i)=1;
                else
                    break;
                end
            end
        end
    end
    out=in;                        
end
function out=rectdown(in)
    hsv=rgb2hsv(in);
    s=hsv(:,:,2);
    v=hsv(:,:,3);
    [N,M]=size(v);
    sbw=imbinarize(s);
    se=strel('disk',3);
    sbw=imopen(sbw,se);

    [B,L]=bwboundaries(sbw);
    STATS=regionprops(L,'Area','BoundingBox');
    len=length(STATS);
    area=[];
    for i=1:len
        area=[area;STATS(i).Area];
    end
    [Y,Index]=sort(abs(area),'descend'); 
    if len>3
        count=3;
    else
        count=len;
    end
    for i=1:count
        rect=STATS(Index(i)).BoundingBox;
        v(rect(2):rect(2)+rect(4),rect(1):rect(1)+rect(3))=v(1,1);        
    end

    vbw=edge(v,'canny');
    [B,L]=bwboundaries(vbw);
    STATS=regionprops(L,'Area','MajorAxisLength','MinorAxisLength');%统计几何特征
    len=length(STATS);
    for i=1:len   
        if STATS(i).MajorAxisLength>M/16 || STATS(i).MinorAxisLength<3 || STATS(i).Area<10
            L(L==i)=0;
        end
    end
    L(L~=0)=1;
    se=strel('line',M/25,0);
    L=imclose(L,se);
    se=strel('line',N/35,90);
    L=imclose(L,se);
    se=strel('square',3);
    L=imopen(L,se);
    L=imfill(L,'holes');
    [B,L]=bwboundaries(L);
    STATS=regionprops(L,'BoundingBox');%统计几何特征
    len=length(STATS);
    figure,imshow(in),title('答题区定位');
    hold on;
    for i=1:len
        rect=STATS(i).BoundingBox;
        rectangle('position',rect,'edgecolor','b');
    end
end
相关推荐
天天要nx7 分钟前
D105【python 接口自动化学习】- pytest进阶参数化用法
python·pytest
是十一月末17 分钟前
Opencv实现图片和视频的加噪、平滑处理
人工智能·python·opencv·计算机视觉·音视频
周盛欢29 分钟前
云服务器yum无法解析mirrorlist.centos.org
开发语言·python
程序员一诺1 小时前
【深度学习】嘿马深度学习笔记第10篇:卷积神经网络,学习目标【附代码文档】
人工智能·python·深度学习·算法
是我知白哒1 小时前
pdf转换文本:基于python的tesseract
python·pdf·ocr
代码的乐趣1 小时前
支持selenium的chrome driver更新到131.0.6778.204
chrome·python·selenium
又蓝2 小时前
使用 Python 操作 Excel 表格
开发语言·python·excel
余~~185381628002 小时前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
0zxm2 小时前
06 - Django 视图view
网络·后端·python·django
ROBOT玲玉3 小时前
Milvus 中,FieldSchema 的 dim 参数和索引参数中的 “nlist“ 的区别
python·机器学习·numpy