Generated Knowledge Prompting for Commonsense Reasoning

本文是知识图谱系列相关的文章,针对《Generated Knowledge Prompting for Commonsense Reasoning》的翻译。

常识推理的生成知识提示

  • 摘要
  • [1 引言](#1 引言)
  • [2 生成知识提示](#2 生成知识提示)
  • [3 实验设置](#3 实验设置)
  • [4 实验结果](#4 实验结果)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)

摘要

结合外部知识是否有利于常识推理,同时保持预训练序列模型的灵活性,这仍然是一个悬而未决的问题。为了研究这个问题,我们开发了生成知识提示,它包括从语言模型中生成知识,然后在回答问题时提供知识作为额外输入。我们的方法不需要对知识集成进行特定任务的监督,也不需要访问结构化的知识库,但它提高了大规模、最先进的模型在四个常识推理任务上的性能,在数值常识(NumerSense)、一般常识(CommonsenseQA 2.0)和科学常识(QASC)基准上实现了最先进的结果。生成的知识提示突出了大规模语言模型作为外部知识的灵活来源,以改进常识推理。我们的代码可在github.com/liujch1998/GKP上获得。

1 引言

2 生成知识提示

3 实验设置

4 实验结果

5 相关工作

6 结论

我们介绍了生成知识提示,这是一种从语言模型中引出和整合知识的简单方法,可以提高常识推理任务的性能。特别是,我们通过提示一个语言模型来生成知识陈述,该模型具有特定任务的、人性化的、小样本的问题知识对演示。我们表明,只需在推理时插入知识,就可以对知识进行集成,而无需对知识集成模型进行微调。我们的方法在多个数据集上显示了有效性,在三个常识性推理任务上设置了新的技术状态,并在各种设置下工作。该方法的成功突出了语言模型作为常识推理的灵活、高质量知识的来源。

相关推荐
机器之心1 小时前
刚刚,苹果基础模型团队负责人庞若鸣被Meta挖走!加入超级智能团队、年薪千万美元
人工智能
G.E.N.2 小时前
开源!RAG竞技场(2):标准RAG算法
大数据·人工智能·深度学习·神经网络·算法·llm·rag
西西弗Sisyphus2 小时前
如果让计算机理解人类语言- Word2Vec(Word to Vector,2013)
人工智能·word·word2vec
前端双越老师2 小时前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子3 小时前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger3 小时前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼3 小时前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339864 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室5 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘