Generated Knowledge Prompting for Commonsense Reasoning

本文是知识图谱系列相关的文章,针对《Generated Knowledge Prompting for Commonsense Reasoning》的翻译。

常识推理的生成知识提示

  • 摘要
  • [1 引言](#1 引言)
  • [2 生成知识提示](#2 生成知识提示)
  • [3 实验设置](#3 实验设置)
  • [4 实验结果](#4 实验结果)
  • [5 相关工作](#5 相关工作)
  • [6 结论](#6 结论)

摘要

结合外部知识是否有利于常识推理,同时保持预训练序列模型的灵活性,这仍然是一个悬而未决的问题。为了研究这个问题,我们开发了生成知识提示,它包括从语言模型中生成知识,然后在回答问题时提供知识作为额外输入。我们的方法不需要对知识集成进行特定任务的监督,也不需要访问结构化的知识库,但它提高了大规模、最先进的模型在四个常识推理任务上的性能,在数值常识(NumerSense)、一般常识(CommonsenseQA 2.0)和科学常识(QASC)基准上实现了最先进的结果。生成的知识提示突出了大规模语言模型作为外部知识的灵活来源,以改进常识推理。我们的代码可在github.com/liujch1998/GKP上获得。

1 引言

2 生成知识提示

3 实验设置

4 实验结果

5 相关工作

6 结论

我们介绍了生成知识提示,这是一种从语言模型中引出和整合知识的简单方法,可以提高常识推理任务的性能。特别是,我们通过提示一个语言模型来生成知识陈述,该模型具有特定任务的、人性化的、小样本的问题知识对演示。我们表明,只需在推理时插入知识,就可以对知识进行集成,而无需对知识集成模型进行微调。我们的方法在多个数据集上显示了有效性,在三个常识性推理任务上设置了新的技术状态,并在各种设置下工作。该方法的成功突出了语言模型作为常识推理的灵活、高质量知识的来源。

相关推荐
我的offer在哪里3 分钟前
Hugging Face 生态全景图:从数据到部署的全链路 AI 工厂
人工智能
田井中律.13 分钟前
多模态RAG实战指南
人工智能
DX_水位流量监测1 小时前
大坝安全监测之渗流渗压位移监测设备技术解析
大数据·运维·服务器·网络·人工智能·安全
昵称已被吞噬~‘(*@﹏@*)’~1 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
Yeats_Liao1 小时前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
老周聊架构1 小时前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测
AKAMAI1 小时前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·测试
寂寞恋上夜1 小时前
异步任务怎么设计:轮询/WebSocket/回调(附PRD写法)
网络·人工智能·websocket·网络协议·markdown转xmind·deepseek思维导图
Deepoch1 小时前
赋能未来:Deepoc具身模型开发板如何成为机器人创新的“基石”
人工智能·机器人·开发板·具身模型·deepoc
格林威2 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机