深度学习(前馈神经网络)知识点总结

用于个人知识点回顾,非详细教程

1.梯度下降

  • 前向传播

特征输入--->线性函数--->激活函数--->输出

  • 反向传播

根据损失函数反向传播,计算梯度更新参数

2.激活函数(activate function)

  • 什么是激活函数?

在神经网络前向传播中,每一层的输出还需要经过激活函数再作为下一层的输入,即 a [ 1 ] = σ ( z [ 1 ] ) a^{[1]}=\sigma(z^{[1]}) a[1]=σ(z[1])

  • 为什么需要激活函数?

如果没有非线性激活函数,模型的最终输出实际上只是输入特征x的线性组合

  • 激活函数的分类

(1)sigmoid函数:除了输出层是一个二分类问题基本不会用
a = σ ( z ) = 1 1 + e − z a=\sigma(z)=\frac{1}{1+e^{-z}} a=σ(z)=1+e−z1

(2)tanh函数:数据平均值更接近0,几乎所有场合都适用
a = t a n h ( z ) = e z − e − z e z + e − z a=tanh(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}} a=tanh(z)=ez+e−zez−e−z

sigmoid函数和tanh函数两者共同的缺点是,在z特别大或者特别小的情况下,导数梯度或者函数斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度。

(3)Relu函数:修正线性单元,最常用的默认函数
a = m a x ( 0 , z ) a=max(0, z) a=max(0,z)

(4)Leaky Relu函数:进入负半区
a = m a x ( 0.01 z , z ) a=max(0.01z, z) a=max(0.01z,z)

sigmoid函数和tanh函数在正负饱和区的梯度都会等于0,而Relu和Leaky Relu可以避免梯度弥散现象,学习速度更快

3. 正则化

  • 偏差和方差

高方差过拟合,高偏差欠拟合

  • L1/L2正则化

在损失函数加上正则化,L1正则化更稀疏

  • dropout正则化

根据概率随机删除节点

  • 其它正则化方法

4.优化算法

  • mini-batch梯度下降法

数据集分成多个子集来更新梯度

  • 动量梯度下降(momentum)

参数更新时的梯度微分值计算方式采用指数加权平均


  • RMSprop(root mean square prop)
  • Adam

momentum+RMSprop

相关推荐
taxunjishu几秒前
Modbus TCP 转 Modbus RTU物联网网关实现光伏产线西门子与罗克韦尔PLC互联
人工智能·物联网·工业物联网·工业自动化·总线协议
User_芊芊君子7 分钟前
从“能说会道”到“自主思考”:一文读懂AI的过去、现在与未来
人工智能·chatgpt
半臻(火白)19 分钟前
Meta DreamGym:用合成经验,重构智能体训练的“低成本革命”
人工智能
快乐非自愿25 分钟前
数智化时代:AI技术重构企业财务管理系统的底层逻辑与实践
大数据·人工智能·低代码
草莓熊Lotso36 分钟前
Git 本地操作入门:版本控制基础、跨平台部署与仓库核心流程
开发语言·人工智能·经验分享·git·后端·架构·gitee
Ma04071341 分钟前
【论文阅读17】-LLM-TSFD:一种基于大型语言模型的工业时间序列人机回路故障诊断方法
人工智能·语言模型·自然语言处理
zskj_zhyl1 小时前
解构智慧养老:当科技成为银发族的“隐形守护者”
大数据·人工智能·科技·物联网
wanzhong23331 小时前
CUDA学习2-CPU和GPU的性能优化
深度学习·gpu·cuda·高性能计算
点云SLAM1 小时前
Exhaustive英文单词学习
人工智能·学习·exhaustive·英文单词学习·雅思备课·全面的
卡索(CASO)汽车调查1 小时前
卡索(CASO)汽车调查:数据智能时代,汽车产业竞争格局与战略升维路径探析
大数据·人工智能·汽车·神秘顾客·汽车密采·神秘人·汽车研究