深度学习(前馈神经网络)知识点总结

用于个人知识点回顾,非详细教程

1.梯度下降

  • 前向传播

特征输入--->线性函数--->激活函数--->输出

  • 反向传播

根据损失函数反向传播,计算梯度更新参数

2.激活函数(activate function)

  • 什么是激活函数?

在神经网络前向传播中,每一层的输出还需要经过激活函数再作为下一层的输入,即 a [ 1 ] = σ ( z [ 1 ] ) a^{[1]}=\sigma(z^{[1]}) a[1]=σ(z[1])

  • 为什么需要激活函数?

如果没有非线性激活函数,模型的最终输出实际上只是输入特征x的线性组合

  • 激活函数的分类

(1)sigmoid函数:除了输出层是一个二分类问题基本不会用
a = σ ( z ) = 1 1 + e − z a=\sigma(z)=\frac{1}{1+e^{-z}} a=σ(z)=1+e−z1

(2)tanh函数:数据平均值更接近0,几乎所有场合都适用
a = t a n h ( z ) = e z − e − z e z + e − z a=tanh(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}} a=tanh(z)=ez+e−zez−e−z

sigmoid函数和tanh函数两者共同的缺点是,在z特别大或者特别小的情况下,导数梯度或者函数斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度。

(3)Relu函数:修正线性单元,最常用的默认函数
a = m a x ( 0 , z ) a=max(0, z) a=max(0,z)

(4)Leaky Relu函数:进入负半区
a = m a x ( 0.01 z , z ) a=max(0.01z, z) a=max(0.01z,z)

sigmoid函数和tanh函数在正负饱和区的梯度都会等于0,而Relu和Leaky Relu可以避免梯度弥散现象,学习速度更快

3. 正则化

  • 偏差和方差

高方差过拟合,高偏差欠拟合

  • L1/L2正则化

在损失函数加上正则化,L1正则化更稀疏

  • dropout正则化

根据概率随机删除节点

  • 其它正则化方法

4.优化算法

  • mini-batch梯度下降法

数据集分成多个子集来更新梯度

  • 动量梯度下降(momentum)

参数更新时的梯度微分值计算方式采用指数加权平均


  • RMSprop(root mean square prop)
  • Adam

momentum+RMSprop

相关推荐
Johny_Zhao14 分钟前
AI+自动化测试系统方案:网络设备与网络应用智能测试
linux·网络·人工智能·python·网络安全·docker·ai·信息安全·云计算·ansible·shell·cisco·huawei·系统运维·itsm·华三·deepseek
Quieeeet17 分钟前
【搭建Node-RED + MQTT Broker实现AI大模型交互】
人工智能·物联网·交互
想要成为计算机高手24 分钟前
半成品的开源双系统VLA模型,OpenHelix-发表于2025.5.6
人工智能·深度学习·计算机视觉·自然语言处理·机器人·开源·vla
qq_3680196637 分钟前
人工智能、机器学习、深度学习定义与联系
人工智能·深度学习·机器学习
路溪非溪42 分钟前
AI系列:智能音箱技术简析
人工智能·智能音箱
追逐☞1 小时前
机器学习(13)——LGBM(2)
人工智能·机器学习
白熊1881 小时前
【计算机视觉】论文精读《基于改进YOLOv3的火灾检测与识别》
人工智能·yolo·计算机视觉
鸢想睡觉1 小时前
【OpenCV基础 1】几何变换、形态学处理、阈值分割、区域提取和脱敏处理
图像处理·人工智能
有Li1 小时前
联合建模组织学和分子标记用于癌症分类|文献速递-深度学习医疗AI最新文献
人工智能·深度学习·分类
乌旭1 小时前
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
人工智能·深度学习·stable diffusion·架构·aigc·midjourney·risc-v