深度学习(前馈神经网络)知识点总结

用于个人知识点回顾,非详细教程

1.梯度下降

  • 前向传播

特征输入--->线性函数--->激活函数--->输出

  • 反向传播

根据损失函数反向传播,计算梯度更新参数

2.激活函数(activate function)

  • 什么是激活函数?

在神经网络前向传播中,每一层的输出还需要经过激活函数再作为下一层的输入,即 a [ 1 ] = σ ( z [ 1 ] ) a^{[1]}=\sigma(z^{[1]}) a[1]=σ(z[1])

  • 为什么需要激活函数?

如果没有非线性激活函数,模型的最终输出实际上只是输入特征x的线性组合

  • 激活函数的分类

(1)sigmoid函数:除了输出层是一个二分类问题基本不会用
a = σ ( z ) = 1 1 + e − z a=\sigma(z)=\frac{1}{1+e^{-z}} a=σ(z)=1+e−z1

(2)tanh函数:数据平均值更接近0,几乎所有场合都适用
a = t a n h ( z ) = e z − e − z e z + e − z a=tanh(z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}} a=tanh(z)=ez+e−zez−e−z

sigmoid函数和tanh函数两者共同的缺点是,在z特别大或者特别小的情况下,导数梯度或者函数斜率会变得特别小,最后就会接近于0,导致降低梯度下降的速度。

(3)Relu函数:修正线性单元,最常用的默认函数
a = m a x ( 0 , z ) a=max(0, z) a=max(0,z)

(4)Leaky Relu函数:进入负半区
a = m a x ( 0.01 z , z ) a=max(0.01z, z) a=max(0.01z,z)

sigmoid函数和tanh函数在正负饱和区的梯度都会等于0,而Relu和Leaky Relu可以避免梯度弥散现象,学习速度更快

3. 正则化

  • 偏差和方差

高方差过拟合,高偏差欠拟合

  • L1/L2正则化

在损失函数加上正则化,L1正则化更稀疏

  • dropout正则化

根据概率随机删除节点

  • 其它正则化方法

4.优化算法

  • mini-batch梯度下降法

数据集分成多个子集来更新梯度

  • 动量梯度下降(momentum)

参数更新时的梯度微分值计算方式采用指数加权平均


  • RMSprop(root mean square prop)
  • Adam

momentum+RMSprop

相关推荐
奔跑草-3 分钟前
【AI日报】每日AI最新消息2026-01-28
人工智能·目标检测·机器学习·计算机视觉·产品经理
罗政5 分钟前
AI提取一批Excel单元格内容(快递信息)数据安全,支持断网提取
人工智能·excel
Serverless 社区6 分钟前
探秘 AgentRun丨动态下发+权限隔离,重构 AI Agent 安全体系
人工智能·安全·重构
光羽隹衡6 分钟前
计算机视觉--Opencv(郁金香图像轮廓提取与多边形逼近)
人工智能·opencv·计算机视觉
星海之恋9929 分钟前
比官方便宜一半以上!Midjourney API 申请及使用
人工智能·midjourney
机器学习算法与Python实战10 分钟前
DeepSeek-OCR-2 本地部署,实测
人工智能·ocr
布谷鸟科技cookoo12 分钟前
布谷鸟科技携AI边缘计算产品线亮相韩国ROSCon KOREA 2026
人工智能·科技·ai·边缘计算·交通物流
小雨青年12 分钟前
鸿蒙 HarmonyOS 6 | AI Kit 集成 CANN Kit 异构计算服务
人工智能·华为·harmonyos
AI浩13 分钟前
Python包离线下载
开发语言·人工智能·python·目标检测
草莓熊Lotso15 分钟前
Qt 显示与输入类控件进阶:数字、进度、输入框实战攻略
java·大数据·开发语言·c++·人工智能·qt