[pytorch]torch.cuda用法以及判断显卡是不是存在问题

常见用法:

torch.cuda.is_available() # 查看是否有可用GPU

torch.cuda.device_count() # 查看GPU数量

torch.cuda.get_device_capability(device) # 查看指定GPU容量

torch.cuda.get_device_name(device) # 查看指定GPU名称

torch.cuda.empty_cache() # 清空程序占用的GPU资源

torch.cuda.manual_seed(seed) # 设置随机种子

torch.cuda.manual_seed_all(seed) # 设置随机种子

torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息

场景问题:我使用torch.cuda.device_count()返回1但是我用nvidia-smi显示是2个显卡,这个是为啥呢?

第一个原因:你在环境变量设置了CUDA_VISIBLE_DEVICES

第二个原因:你显卡坏了一个,如何判断是不是坏了可以使用上面接口测试

import torch

device=torch.device("cuda:0")

print(torch.cuda.get_device_capability(device))

把0改成1如果报错则表示1这个显卡有问题或者不存在,据此可以判断显卡坏了。但是这个只是系统层面表示坏了。还需要进一步判断。首先重启系统在测试一次,不行就把显卡拔插一下,依然不行则做最后尝试把系统重装一次(这个一般都没效果),还不行只能说明显卡坏了。

相关推荐
泰迪智能科技01几秒前
企业数据挖掘建模平台哪家好?
人工智能·数据挖掘
sauTCc9 分钟前
Pytorch加载数据的Dateset类和DataLoader类
人工智能·pytorch·python
啥都鼓捣的小yao13 分钟前
课程2. 用PyTorch训练神经网络与梯度下降
人工智能·pytorch·神经网络
PeterClerk21 分钟前
DeepSeek R1 训练策略4个阶段解析
人工智能·深度学习·机器学习·语言模型·自然语言处理·llm·deepseek
量化投资技术23 分钟前
深入xtquant:掌握实时行情订阅的艺术
python·量化交易·量化·量化投资·qmt·miniqmt
m0_7482459232 分钟前
Python大数据可视化:基于spark的短视频推荐系统的设计与实现_django+spider
python·spark·django
网络安全Ash44 分钟前
Python网络安全脚本
开发语言·python·web安全
龚大龙1 小时前
机器学习(李宏毅)——Diffusion Model
人工智能·机器学习
陈敬雷-充电了么-CEO兼CTO1 小时前
DeepSeek-R1:通过强化学习激发大语言模型的推理能力
人工智能·gpt·搜索引擎·自然语言处理·chatgpt·大模型·aigc
小宇爱1 小时前
55、深度学习-自学之路-自己搭建深度学习框架-16、使用LSTM解决RNN梯度消失和梯度爆炸的问题,重写莎士比亚风格文章。
人工智能·rnn·深度学习·神经网络·自然语言处理