[pytorch]torch.cuda用法以及判断显卡是不是存在问题

常见用法:

torch.cuda.is_available() # 查看是否有可用GPU

torch.cuda.device_count() # 查看GPU数量

torch.cuda.get_device_capability(device) # 查看指定GPU容量

torch.cuda.get_device_name(device) # 查看指定GPU名称

torch.cuda.empty_cache() # 清空程序占用的GPU资源

torch.cuda.manual_seed(seed) # 设置随机种子

torch.cuda.manual_seed_all(seed) # 设置随机种子

torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息

场景问题:我使用torch.cuda.device_count()返回1但是我用nvidia-smi显示是2个显卡,这个是为啥呢?

第一个原因:你在环境变量设置了CUDA_VISIBLE_DEVICES

第二个原因:你显卡坏了一个,如何判断是不是坏了可以使用上面接口测试

import torch

device=torch.device("cuda:0")

print(torch.cuda.get_device_capability(device))

把0改成1如果报错则表示1这个显卡有问题或者不存在,据此可以判断显卡坏了。但是这个只是系统层面表示坏了。还需要进一步判断。首先重启系统在测试一次,不行就把显卡拔插一下,依然不行则做最后尝试把系统重装一次(这个一般都没效果),还不行只能说明显卡坏了。

相关推荐
这儿有一堆花30 分钟前
python视觉开发
开发语言·python
普通网友30 分钟前
编写一个Python脚本自动下载壁纸
jvm·数据库·python
shayudiandian1 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声2 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼2 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
w***4812 小时前
Python中的简单爬虫
爬虫·python·信息可视化
腾讯WeTest2 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c3 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费3 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习