[pytorch]torch.cuda用法以及判断显卡是不是存在问题

常见用法:

torch.cuda.is_available() # 查看是否有可用GPU

torch.cuda.device_count() # 查看GPU数量

torch.cuda.get_device_capability(device) # 查看指定GPU容量

torch.cuda.get_device_name(device) # 查看指定GPU名称

torch.cuda.empty_cache() # 清空程序占用的GPU资源

torch.cuda.manual_seed(seed) # 设置随机种子

torch.cuda.manual_seed_all(seed) # 设置随机种子

torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息

场景问题:我使用torch.cuda.device_count()返回1但是我用nvidia-smi显示是2个显卡,这个是为啥呢?

第一个原因:你在环境变量设置了CUDA_VISIBLE_DEVICES

第二个原因:你显卡坏了一个,如何判断是不是坏了可以使用上面接口测试

import torch

device=torch.device("cuda:0")

print(torch.cuda.get_device_capability(device))

把0改成1如果报错则表示1这个显卡有问题或者不存在,据此可以判断显卡坏了。但是这个只是系统层面表示坏了。还需要进一步判断。首先重启系统在测试一次,不行就把显卡拔插一下,依然不行则做最后尝试把系统重装一次(这个一般都没效果),还不行只能说明显卡坏了。

相关推荐
锋行天下5 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
quikai19815 小时前
python练习第二组
开发语言·python
熊猫_豆豆6 小时前
python 用手势控制程序窗口文字大小
python·手势识别
测试秃头怪6 小时前
2026最新软件测试面试八股文(含答案+文档)
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
LUU_796 小时前
Day29 异常处理
python
子夜江寒6 小时前
Python 学习-Day8-执行其他应用程序
python·学习
背心2块钱包邮6 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水7 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊7 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘7 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能