[pytorch]torch.cuda用法以及判断显卡是不是存在问题

常见用法:

torch.cuda.is_available() # 查看是否有可用GPU

torch.cuda.device_count() # 查看GPU数量

torch.cuda.get_device_capability(device) # 查看指定GPU容量

torch.cuda.get_device_name(device) # 查看指定GPU名称

torch.cuda.empty_cache() # 清空程序占用的GPU资源

torch.cuda.manual_seed(seed) # 设置随机种子

torch.cuda.manual_seed_all(seed) # 设置随机种子

torch.cuda.get_device_properties(i) # i为第几张卡,显示该卡的详细信息

场景问题:我使用torch.cuda.device_count()返回1但是我用nvidia-smi显示是2个显卡,这个是为啥呢?

第一个原因:你在环境变量设置了CUDA_VISIBLE_DEVICES

第二个原因:你显卡坏了一个,如何判断是不是坏了可以使用上面接口测试

import torch

device=torch.device("cuda:0")

print(torch.cuda.get_device_capability(device))

把0改成1如果报错则表示1这个显卡有问题或者不存在,据此可以判断显卡坏了。但是这个只是系统层面表示坏了。还需要进一步判断。首先重启系统在测试一次,不行就把显卡拔插一下,依然不行则做最后尝试把系统重装一次(这个一般都没效果),还不行只能说明显卡坏了。

相关推荐
棒棒的皮皮21 小时前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
大游小游之老游1 天前
Python中如何实现一个程序运行时,调用另一文件中的函数
python
2501_941804321 天前
从单机消息队列到分布式高可用消息中间件体系落地的互联网系统工程实践随笔与多语言语法思考
人工智能·memcached
mantch1 天前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
weixin_445054721 天前
力扣热题51
c++·python·算法·leetcode
档案宝档案管理1 天前
档案宝自动化档案管理,从采集、整理到归档、利用,一步到位
大数据·数据库·人工智能·档案·档案管理
朱朱没烦恼yeye1 天前
java基础学习
java·python·学习
wenzhangli71 天前
Ooder A2UI 框架中的矢量图形全面指南
人工智能
躺柒1 天前
读共生:4.0时代的人机关系07工作者
人工智能·ai·自动化·人机交互·人机对话·人机关系
码丽莲梦露1 天前
ICLR2025年与运筹优化相关文章
人工智能·运筹优化