Vector Search with OpenAI Embeddings: Lucene Is All You Need

本文是LLM系列文章,针对《Vector Search with OpenAI Embeddings: Lucene Is All You Need》的翻译。

使用OpenAI嵌入的向量搜索:Lucence是你所需的一切

  • 摘要
  • [1 引言](#1 引言)
  • [2 从架构到实现](#2 从架构到实现)
  • [3 实验](#3 实验)
  • [4 讨论](#4 讨论)
  • [5 结论](#5 结论)

摘要

我们在流行的MS MARCO文章排名测试集上使用Lucene提供了一个可复制的、端到端的OpenAI嵌入向量搜索演示。我们工作的主要目标是挑战主流的说法,即专用向量存储是利用深度神经网络应用于搜索的最新进展所必需的。恰恰相反,我们表明Lucene中的分层可导航小世界网络(HNSW)索引足以在标准双编码器架构中提供向量搜索功能。这表明,从简单的成本效益分析来看,似乎没有令人信服的理由将专用向量存储引入现代"人工智能堆栈"中进行搜索,因为这些应用程序已经在现有的、广泛部署的基础设施中获得了大量投资。

1 引言

2 从架构到实现

3 实验

4 讨论

5 结论

毫无疑问,密集向量的操作是当今搜索的重要组成部分。我们要解决的核心争论是如何在生产系统中实施和部署这些功能。主流的说法是,你需要一个新的、独特的添加到你的企业"AI堆栈"中------一个向量存储。我们提出的另一种选择是:如果你已经构建了搜索应用程序,那么你很可能已经投资于Lucene生态系统。在这种情况下,Lucene就是您所需要的全部。当然,时间会告诉我们谁是对的。

相关推荐
Jump 不二11 分钟前
百度 PaddleOCR 3.0 深度测评:与 MinerU 的复杂表格识别对决
人工智能·深度学习·百度·ocr
用户51914958484512 分钟前
Flutter应用设置插件 - 轻松打开iOS和Android系统设置
人工智能·aigc
孤廖22 分钟前
C++ 模板再升级:非类型参数、特化技巧(含全特化与偏特化)、分离编译破解
linux·服务器·开发语言·c++·人工智能·后端·深度学习
润 下24 分钟前
C语言——回调函数的典型示例(分析详解)
c语言·开发语言·人工智能·经验分享·笔记·程序人生
koo36426 分钟前
李宏毅机器学习笔记27
人工智能·笔记·机器学习
weixin_4481199426 分钟前
Datawhale人工智能的数学基础 202510第3次作业
人工智能·算法
文火冰糖的硅基工坊31 分钟前
[人工智能-大模型-9]:大模型十大应用场景和对应的代表性的产品?
服务器·人工智能·大模型
木建隶35 分钟前
AI 食用指南--更好的用AI编程
人工智能·ai编程
亚马逊云开发者44 分钟前
GenDev 智能开发:Amazon Q Developer CLI 赋能Amazon Code Family实现代码审核
人工智能