pytorch中 nn.Conv2d的简单用法

python 复制代码
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zeros')

参数介绍

  • in_channels:卷积层输入通道数

  • out_channels:卷积层输出通道数

  • kernel_size:卷积层的卷积核大小

  • padding:填充长度

  • stride:卷积核移动的步长

  • dilation:是否采用空洞卷积

  • groups:是否采用分组卷积

  • bias:是否添加偏置参数

  • padding_modepadding的模式

如果输入大小为:数量N即批处理大小(batch size),输入通道数C_in,输入高度H_in,输入宽度C_in。输出大小为:数量N,输出通道数C_out,输出高度H_out,输出宽度C_out。
i n p u t : ( N , C i n , H i n , W i n ) o u t p u t : ( N , C o u t , H o u t , W o u t ) input: \quad (N, C_{in},H_{in},W_{in}) \\ output: \quad (N,C_{out}, H_{out}, W_{out}) input:(N,Cin,Hin,Win)output:(N,Cout,Hout,Wout)

之间的转换为:
( N i , C o u t ) = b i a s ( C o u t ) + ∑ k = 0 C i n − 1 w e i g h t ( C o u t , k ) ∗ ( N i , k ) (N_i,C_{out}) = bias(C_{out}) + \sum_{k=0}^{C_{in}-1}weight(C_{out},k) * (N{i},k) (Ni,Cout)=bias(Cout)+k=0∑Cin−1weight(Cout,k)∗(Ni,k)

H o u t = [ H i n + 2 ∗ p a d d i n g [ 0 ] − d i l a t i o n [ 0 ] ∗ ( k e r n a l s i z e [ 0 ] − 1 ) − 1 s t r i d e [ 0 ] + 1 ] H_{out} = [ \frac {H_{in} + 2 * padding[0] - dilation[0] *(kernal_size[0] - 1) - 1}{stride[0]} + 1] Hout=[stride[0]Hin+2∗padding[0]−dilation[0]∗(kernalsize[0]−1)−1+1]

W o u t = [ W i n + 2 ∗ p a d d i n g [ 1 ] − d i l a t i o n [ 1 ] ∗ ( k e r n e l s i z e [ 1 ] − 1 ) − 1 s t r i d e [ 1 ] + 1 ] W_{out} = [ \frac {W_{in} + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1} {stride[1]} + 1] Wout=[stride[1]Win+2∗padding[1]−dilation[1]∗(kernelsize[1]−1)−1+1]

对于二维简化的:
W i n , H i n 输入的宽、高 W o u t , H o u t 输出的宽,高 F 卷积核的大小 S 步长 P 边界填充 W_{in},H_{in} \quad 输入的宽、高 \\ W_{out},H_{out} \quad 输出的宽,高 \\ F \quad 卷积核的大小 \\ S \quad 步长 \\ P \quad 边界填充 Win,Hin输入的宽、高Wout,Hout输出的宽,高F卷积核的大小S步长P边界填充

那么输出的宽、高为:
W o u t = W i n − F W + 2 P S + 1 H o u t = H i n − F H + 2 P S + 1 W_{out} = \frac {W_{in} - F_{W} + 2P} S + 1 \\ H_{out} = \frac {H_{in} - F_{H} + 2P} S + 1 Wout=SWin−FW+2P+1Hout=SHin−FH+2P+1

在pytorch中的使用

  • 直接使用(不常见)
python 复制代码
import torch 
import torch.nn as nn 
# https://www.bilibili.com/video/BV1644y1h7LN/?spm_id_from=333.337.search-card.all.click&vd_source=13dfbe5ed2deada83969fafa995ccff6

# 输入通道数
in_channels = 1
# 输出通道数 
out_channels = 1
# 批处理大小 
batch_size = 1
# 卷积核大小 (3,3)
kernel_size = 3
# 输入规格
input_size = [batch_size, in_channels, 4, 4]

# nn.Conv2d使用,其他默认值
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size)
# 随机输入特征图
input_feature_map = torch.randn(input_size)
# 打印输入特征图形状
print(input_feature_map.shape)
# 求出输出特征图
output_feature_map = conv_layer(input_feature_map)
# 打印出卷积核的规格
print(conv_layer.weight.shape)
# weight == out_channel * in_channel * height * weight
# 打印输出特征图大小
print(output_feature_map.shape)

输出:

text 复制代码
torch.Size([1, 1, 4, 4])
torch.Size([1, 1, 3, 3])
torch.Size([1, 1, 2, 2])
  • 封装为类的形式
python 复制代码
import torch 
from torch import nn

# 定义一个同样操作的卷积类
class Foo(nn.Module):
    def __init__(self, in_channel, out_channel):
        super(Foo,self).__init__()
        self.layer = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3)
        )
    def forward(self, x):
        return self.layer(x)

# 实例化一个
conv2 = Foo(1,1)
# 输出特征图, input_feature_map_2 和 input_feature_map是相同的值
output_feature_map_2 = conv2(input_feature_map_2)
print(output_feature_map_2)

输出:

text 复制代码
tensor([[[[ 0.5144,  0.0672],
          [ 0.2169, -0.0591]]]], grad_fn=<ConvolutionBackward0>)

可以观察到,这两个操作相同但是结果值却不相同。这是因为虽然两者实现了相同的卷积操作,但由于它们的初始化和权重值的不同,因此输出结果可能不完全一致。 另外,对于卷积操作的结果,输出的张量形状可能会有所不同,但数值内容应该是相似的。如果希望确保两种方式得到的输出结果完全一致,可以尝试使用相同的初始化参数,并确保权重值相同。

相关推荐
AI科技星3 分钟前
质量定义方程常数k = 4π m_p的来源、推导与意义
服务器·数据结构·人工智能·科技·算法·机器学习·生活
机器之心19 分钟前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心21 分钟前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
_Stellar23 分钟前
从输入到输出:大语言模型一次完整推理简单解析
人工智能·语言模型·自然语言处理
【建模先锋】24 分钟前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲0124 分钟前
Week02 深度学习基本原理
人工智能·深度学习
老蒋新思维26 分钟前
创客匠人:认知即资产 ——AI 时代创始人 IP 知识变现的底层逻辑
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
开放知识图谱30 分钟前
论文浅尝 | 大语言模型在带超关系的知识图谱上的推理(ICLR2025)
人工智能·语言模型·自然语言处理·知识图谱
世岩清上31 分钟前
世岩清上:“人工智能+”可以赋能哪些行业场景?
人工智能·百度
sumAll32 分钟前
别再手动对齐矩形了!这个开源神器让 AI 帮你画架构图 (Next-AI-Draw-IO 体验)
前端·人工智能·next.js