文献阅读:Deep Learning Enabled Semantic Communication Systems

目录


论文简介


关于文章内容的总结

框架或结构 作用
DeepSC 最大化系统容量、最小化语义误差
设计两个Loss函数 理解语义信息、最大化系统容量
语义-信道联合编码 保持 s s s和 s ^ \hat s s^之间的含义不变← L C E \mathcal{L}_{\mathrm{CE}} LCE用于衡量 s s s和 s ^ \hat s s^之间的差异
语义-信道联合编码 使网络学习特定目标的知识(联合设计时,信道编码可以注重保护与传输和目标相关的语义信息,而忽略其他不相关的信息)
L C E \mathcal{L}_{\mathrm{CE}} LCE 通过训练整个系统来最小化 s s s和 s ^ \hat s s^之间的差异
L MI \mathcal{L}_{\text {MI }} LMI 最大化发射机训练期间实现的数据速率

引申出不理解的问题

  • 语义-信道联合编码在上图流程中属于哪部分?

    个人理解:整个流程都是

  • 联合设计收发器在上图流程中属于哪部分?

    未解决

  • 以下概念分不清楚
    <>

    • E2E通信系统是一种形式
      自编码器是一种结构
      通信系统物理层收发机与自编码器在功能和结构上是相似的。自编码器的主要功能是实现数据重构,而通信系统的主要功能是在接收端恢复发射端的信号。
      若把收发信机看成一种自编码器结构,则发射机与接收机分别对应于自编码器的编码器与译码器。因此,通信系统收发信机的最优化设计就转变为自编码器端到端的优化任务。
相关推荐
东临碣石822 分钟前
【AI论文】BlenderFusion:基于三维场景的视觉编辑与生成式合成
人工智能
正在走向自律3 分钟前
第二章-AIGC入门-开启AIGC音频探索之旅:从入门到实践(6/36)
人工智能·aigc·音视频·语音识别·ai音乐·ai 音频·智能语音助手
Trent19859 分钟前
影楼精修-智能修图Agent
图像处理·人工智能·计算机视觉·aigc
烟锁池塘柳011 分钟前
【大模型】解码策略:Greedy Search、Beam Search、Top-k/Top-p、Temperature Sampling等
人工智能·深度学习·机器学习
盼小辉丶26 分钟前
PyTorch实战(14)——条件生成对抗网络(conditional GAN,cGAN)
人工智能·pytorch·生成对抗网络
Allen_LVyingbo1 小时前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc9211 小时前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边
isNotNullX1 小时前
什么是数据分析?常见方法全解析
大数据·数据库·数据仓库·人工智能·数据分析
riveting1 小时前
明远智睿H618:开启多场景智慧生活新时代
人工智能·嵌入式硬件·智能硬件·lga封装·3506
夜阑卧听风吹雨,铁马冰河入梦来2 小时前
Spring AI 阿里巴巴学习
人工智能·学习·spring