文献阅读:Deep Learning Enabled Semantic Communication Systems

目录


论文简介


关于文章内容的总结

框架或结构 作用
DeepSC 最大化系统容量、最小化语义误差
设计两个Loss函数 理解语义信息、最大化系统容量
语义-信道联合编码 保持 s s s和 s ^ \hat s s^之间的含义不变← L C E \mathcal{L}_{\mathrm{CE}} LCE用于衡量 s s s和 s ^ \hat s s^之间的差异
语义-信道联合编码 使网络学习特定目标的知识(联合设计时,信道编码可以注重保护与传输和目标相关的语义信息,而忽略其他不相关的信息)
L C E \mathcal{L}_{\mathrm{CE}} LCE 通过训练整个系统来最小化 s s s和 s ^ \hat s s^之间的差异
L MI \mathcal{L}_{\text {MI }} LMI 最大化发射机训练期间实现的数据速率

引申出不理解的问题

  • 语义-信道联合编码在上图流程中属于哪部分?

    个人理解:整个流程都是

  • 联合设计收发器在上图流程中属于哪部分?

    未解决

  • 以下概念分不清楚
    <>

    • E2E通信系统是一种形式
      自编码器是一种结构
      通信系统物理层收发机与自编码器在功能和结构上是相似的。自编码器的主要功能是实现数据重构,而通信系统的主要功能是在接收端恢复发射端的信号。
      若把收发信机看成一种自编码器结构,则发射机与接收机分别对应于自编码器的编码器与译码器。因此,通信系统收发信机的最优化设计就转变为自编码器端到端的优化任务。
相关推荐
YF云飞几秒前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
ningmengjing_16 分钟前
理解损失函数:机器学习的指南针与裁判
人工智能·深度学习·机器学习
程序猿炎义31 分钟前
【NVIDIA AIQ】自定义函数实践
人工智能·python·学习
小陈phd44 分钟前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
居然JuRan1 小时前
阿里云多模态大模型岗三面面经
人工智能
THMAIL1 小时前
深度学习从入门到精通 - BERT与预训练模型:NLP领域的核弹级技术详解
人工智能·python·深度学习·自然语言处理·性能优化·bert
nju_spy1 小时前
Kaggle - LLM Science Exam 大模型做科学选择题
人工智能·机器学习·大模型·rag·南京大学·gpu分布计算·wikipedia 维基百科
中國龍在廣州1 小时前
GPT-5冷酷操盘,游戏狼人杀一战封神!七大LLM狂飙演技,人类玩家看完沉默
人工智能·gpt·深度学习·机器学习·计算机视觉·机器人
东哥说-MES|从入门到精通1 小时前
Mazak MTF 2025制造未来参观总结
大数据·网络·人工智能·制造·智能制造·数字化
CodeCraft Studio2 小时前
Aspose.Words for .NET 25.7:支持自建大语言模型(LLM),实现更安全灵活的AI文档处理功能
人工智能·ai·语言模型·llm·.net·智能文档处理·aspose.word