文献阅读:Deep Learning Enabled Semantic Communication Systems

目录


论文简介


关于文章内容的总结

框架或结构 作用
DeepSC 最大化系统容量、最小化语义误差
设计两个Loss函数 理解语义信息、最大化系统容量
语义-信道联合编码 保持 s s s和 s ^ \hat s s^之间的含义不变← L C E \mathcal{L}_{\mathrm{CE}} LCE用于衡量 s s s和 s ^ \hat s s^之间的差异
语义-信道联合编码 使网络学习特定目标的知识(联合设计时,信道编码可以注重保护与传输和目标相关的语义信息,而忽略其他不相关的信息)
L C E \mathcal{L}_{\mathrm{CE}} LCE 通过训练整个系统来最小化 s s s和 s ^ \hat s s^之间的差异
L MI \mathcal{L}_{\text {MI }} LMI 最大化发射机训练期间实现的数据速率

引申出不理解的问题

  • 语义-信道联合编码在上图流程中属于哪部分?

    个人理解:整个流程都是

  • 联合设计收发器在上图流程中属于哪部分?

    未解决

  • 以下概念分不清楚
    <>

    • E2E通信系统是一种形式
      自编码器是一种结构
      通信系统物理层收发机与自编码器在功能和结构上是相似的。自编码器的主要功能是实现数据重构,而通信系统的主要功能是在接收端恢复发射端的信号。
      若把收发信机看成一种自编码器结构,则发射机与接收机分别对应于自编码器的编码器与译码器。因此,通信系统收发信机的最优化设计就转变为自编码器端到端的优化任务。
相关推荐
子午9 分钟前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机20 分钟前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教25 分钟前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教27 分钟前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_610328 分钟前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型
zhangfeng113334 分钟前
深入剖析Kimi K2 Thinking与其他大规模语言模型(Large Language Models, LLMs)之间的差异
人工智能·语言模型·自然语言处理
paopao_wu1 小时前
人脸检测与识别-InsightFace:特征向量提取与识别
人工智能·目标检测
Aevget1 小时前
MyEclipse全新发布v2025.2——AI + Java 24 +更快的调试
java·ide·人工智能·eclipse·myeclipse
IT_陈寒1 小时前
React 18并发渲染实战:5个核心API让你的应用性能飙升50%
前端·人工智能·后端
韩曙亮1 小时前
【人工智能】AI 人工智能 技术 学习路径分析 ① ( Python语言 -> 微积分 / 概率论 / 线性代数 -> 机器学习 )
人工智能·python·学习·数学·机器学习·ai·微积分