decomposed Relative Positional Embeddings的理解

文章目录

正文

relative positional embedding的一种实现方式是:先计算q和k的相对位置坐标,然后依据相对位置坐标从给定的table中取值。

以q和k都是7×7为例,每个相对位置有两个索引对应x和y两个方向,每个索引值的取值范围是[-6,6]。(第0行相对第6行,x索引相对值为-6;第6行相对第0行,x索引相对值为6;所以索引取值范围是[-6,6])。

这个时候可以构建一个shape为[13,13, head_dim]的table,则当相对位置为(i,j)时,

python 复制代码
position embedding=table[i, j]

(i,j的取值范围都是[0, 12])具体可参考:有关swin transformer相对位置编码的理解

decomposed Relative Positional Embeddings的思想在于,分别计算x和y两个方向上计算相对位置坐标,并分别从两个table中取出对应的位置编码,再将两个方向的编码相加作为最终的编码。

以q为4×4和k是4×4为例,在x和y方向上,每个索引值的取值范围是[-3,3],所以需要构建两个shape为[7, head_dim]的table:

python 复制代码
if use_rel_pos:
    assert (
        input_size is not None
    ), "Input size must be provided if using relative positional encoding."
    # initialize relative positional embeddings
    rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
    rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

然后依据q和k的shape来计算每个方向上对应的相对位置编码:

python 复制代码
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
    # q_size和k_size分别为当前方向上,q和k的个数, rel_pos为当前方向上定义的table
    q_coords = torch.arange(q_size)[:, None] # shape: [4, 1],给当前方向上每个q编号
    k_coords = torch.arange(k_size)[None, :]  # shape:[1, 4],给当前方向上每个k编号
    relative_coords = (q_coords - k_coords) + (k_size - 1) # q_coords - k_coords就是当前方向上每个q相对于k的位置,加上k_size - 1是为了让相对位置非负
    return rel_pos[relative_coords.long()] # 依据相对位置从预定义好的table中取值

依据q和每个方向上对应的位置编码来计算最终的编码:

python 复制代码
    q_h, q_w = q_size
    k_h, k_w = k_size
    Rh = get_rel_pos(q_h, k_h, rel_pos_h) # 获取h方向的位置编码,shape:[4, 4, head_dim]
    Rw = get_rel_pos(q_w, k_w, rel_pos_w) # 获取w方向的位置编码,shape:[4, 4, head_dim]

    B, _, dim = q.shape
    r_q = q.reshape(B, q_h, q_w, dim)
    rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) # r_q与Rh在h方向矩阵乘
    rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
    # attn是自注意力机制计算得到的注意力图
    attn = attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
    ).view(B, q_h * q_w, k_h * k_w)

    return attn

文献来源

https://blog.csdn.net/weixin_42364196/article/details/132477924

https://github.com/microsoft/Swin-Transformer

相关推荐
小锋学长生活大爆炸16 分钟前
【DGL系列】dgl中为graph指定CSR/COO/CSC矩阵格式
人工智能·pytorch·深度学习·图神经网络·gnn·dgl
机械心29 分钟前
pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
pytorch·python·深度学习
啊波次得饿佛哥1 小时前
9. 神经网络(一.神经元模型)
人工智能·深度学习·神经网络
Chatopera 研发团队1 小时前
Tensor 基本操作4 理解 indexing,加减乘除和 broadcasting 运算 | PyTorch 深度学习实战
人工智能·pytorch·深度学习
白白糖1 小时前
深度学习 Pytorch 动态计算图与梯度下降入门
人工智能·pytorch·深度学习
Kacey Huang2 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
漂亮_大男孩2 小时前
深度学习|表示学习|卷积神经网络|局部链接是什么?|06
深度学习·学习·cnn
eguid_13 小时前
JavaScript图像处理,常用图像边缘检测算法简单介绍说明
javascript·图像处理·算法·计算机视觉
lly_csdn1234 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
TURING.DT5 小时前
模型部署:TF Serving 的使用
深度学习·tensorflow