LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER

本文是LLM系列文章,针对《LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER》的翻译。

作为自主决策者的大语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 前言](#2 前言)
  • [3 任务形式化](#3 任务形式化)
  • [4 方法](#4 方法)
  • [5 实验](#5 实验)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)

摘要

尽管大型语言模型(LLM)表现出令人印象深刻的语言理解和上下文学习能力,但在解决现实世界任务时,它们的决策能力仍然严重依赖于特定任务专家知识的指导。为了释放LLM作为自主决策者的潜力,本文提出了一种JUDEC赋予LLM自我判断能力的方法,使LLM能够实现自主判断和决策探索。具体来说,在JUDEC中,基于Elo的自我判断机制被设计为将Elo分数分配给决策步骤,通过两个解决方案之间的成对比较来判断其价值和效用,然后相应地引导决策搜索过程走向最优解决方案。ToolBench数据集的实验结果表明,JUDEC优于基线,在不同任务上的通过率提高了10%以上。它提供更高质量的解决方案并降低成本(ChatGPT API调用),突出了其有效性和效率。

1 引言

2 前言

3 任务形式化

4 方法

5 实验

6 相关工作

7 结论

在这项工作中,我们引入了一种新的方法JUDEC,使大型语言模型(LLM)能够在不同的现实世界任务中作为自主决策者,而不需要特定任务的专家知识。基于Elo的自我判断机制的引入增强了LLM对决策步骤的自我判断,并指导决策探索过程。在ToolBench数据集上进行的大量实验已经证实了JUDEC的有效性,它通过显著提高通过率和产生更高质量的解决方案而优于基线方法。此外,LLM API调用的减少显示了我们方法的效率提高。通过赋予LLM自主决策能力,我们的工作为其在现实世界场景中的更广泛应用铺平了道路,消除了对特定任务知识的依赖。

相关推荐
巷9555 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网34 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong842 分钟前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶1 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai
果冻人工智能2 小时前
每一条广告都只为你而生: 用 人工智能 颠覆广告行业的下一步
人工智能