LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER

本文是LLM系列文章,针对《LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER》的翻译。

作为自主决策者的大语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 前言](#2 前言)
  • [3 任务形式化](#3 任务形式化)
  • [4 方法](#4 方法)
  • [5 实验](#5 实验)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)

摘要

尽管大型语言模型(LLM)表现出令人印象深刻的语言理解和上下文学习能力,但在解决现实世界任务时,它们的决策能力仍然严重依赖于特定任务专家知识的指导。为了释放LLM作为自主决策者的潜力,本文提出了一种JUDEC赋予LLM自我判断能力的方法,使LLM能够实现自主判断和决策探索。具体来说,在JUDEC中,基于Elo的自我判断机制被设计为将Elo分数分配给决策步骤,通过两个解决方案之间的成对比较来判断其价值和效用,然后相应地引导决策搜索过程走向最优解决方案。ToolBench数据集的实验结果表明,JUDEC优于基线,在不同任务上的通过率提高了10%以上。它提供更高质量的解决方案并降低成本(ChatGPT API调用),突出了其有效性和效率。

1 引言

2 前言

3 任务形式化

4 方法

5 实验

6 相关工作

7 结论

在这项工作中,我们引入了一种新的方法JUDEC,使大型语言模型(LLM)能够在不同的现实世界任务中作为自主决策者,而不需要特定任务的专家知识。基于Elo的自我判断机制的引入增强了LLM对决策步骤的自我判断,并指导决策探索过程。在ToolBench数据集上进行的大量实验已经证实了JUDEC的有效性,它通过显著提高通过率和产生更高质量的解决方案而优于基线方法。此外,LLM API调用的减少显示了我们方法的效率提高。通过赋予LLM自主决策能力,我们的工作为其在现实世界场景中的更广泛应用铺平了道路,消除了对特定任务知识的依赖。

相关推荐
CourserLi3 分钟前
【AI 解题】Yusa的密码学课堂 2026.1.25
人工智能·密码学
人工智能AI技术5 分钟前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python
逐梦苍穹7 分钟前
Clawdbot vs ClaudeCode:7x24运行方案全对比
人工智能·claudecode·clawdbot
AI街潜水的八角12 分钟前
语义分割实战——基于EGEUNet神经网络印章分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习·神经网络
MasonYyp28 分钟前
DSPy优化提示词
大数据·人工智能
互联网科技看点29 分钟前
园世骨传导耳机:专业之选,X7与Betapro引领游泳运动双潮流
人工智能
大公产经晚间消息29 分钟前
天九企服董事长戈峻出席欧洲经贸峰会“大进步日”
大数据·人工智能·物联网
deephub31 分钟前
为什么标准化要用均值0和方差1?
人工智能·python·机器学习·标准化
饮哉34 分钟前
LLM生成文本每次是把之前所有的token都输入,还是只输入上一个token?
人工智能·大模型
云道轩39 分钟前
Planning Analytics Assistant (AI)简介
人工智能