LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER

本文是LLM系列文章,针对《LARGE LANGUAGE MODEL AS AUTONOMOUS DECISION MAKER》的翻译。

作为自主决策者的大语言模型

  • 摘要
  • [1 引言](#1 引言)
  • [2 前言](#2 前言)
  • [3 任务形式化](#3 任务形式化)
  • [4 方法](#4 方法)
  • [5 实验](#5 实验)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)

摘要

尽管大型语言模型(LLM)表现出令人印象深刻的语言理解和上下文学习能力,但在解决现实世界任务时,它们的决策能力仍然严重依赖于特定任务专家知识的指导。为了释放LLM作为自主决策者的潜力,本文提出了一种JUDEC赋予LLM自我判断能力的方法,使LLM能够实现自主判断和决策探索。具体来说,在JUDEC中,基于Elo的自我判断机制被设计为将Elo分数分配给决策步骤,通过两个解决方案之间的成对比较来判断其价值和效用,然后相应地引导决策搜索过程走向最优解决方案。ToolBench数据集的实验结果表明,JUDEC优于基线,在不同任务上的通过率提高了10%以上。它提供更高质量的解决方案并降低成本(ChatGPT API调用),突出了其有效性和效率。

1 引言

2 前言

3 任务形式化

4 方法

5 实验

6 相关工作

7 结论

在这项工作中,我们引入了一种新的方法JUDEC,使大型语言模型(LLM)能够在不同的现实世界任务中作为自主决策者,而不需要特定任务的专家知识。基于Elo的自我判断机制的引入增强了LLM对决策步骤的自我判断,并指导决策探索过程。在ToolBench数据集上进行的大量实验已经证实了JUDEC的有效性,它通过显著提高通过率和产生更高质量的解决方案而优于基线方法。此外,LLM API调用的减少显示了我们方法的效率提高。通过赋予LLM自主决策能力,我们的工作为其在现实世界场景中的更广泛应用铺平了道路,消除了对特定任务知识的依赖。

相关推荐
超龄超能程序猿18 分钟前
Spring AI Alibaba 与 Ollama对话历史的持久化
java·人工智能·spring
孤狼灬笑37 分钟前
机器学习四范式(有监督、无监督、强化学习、半监督学习)
人工智能·强化学习·无监督学习·半监督学习·有监督学习
第七序章38 分钟前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
晨非辰1 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
阿里云大数据AI技术1 小时前
云栖实录 | 通义实验室基于MaxCompute进行大模型数据管理及处理
大数据·人工智能
玉树临风江流儿1 小时前
关于pkg-config的使用示例--g++编译过程引入第三方库(如Opencv、Qt)
人工智能·opencv
struggle20251 小时前
AxonHub 开源程序是一个现代 AI 网关系统,提供统一的 OpenAI、Anthropic 和 AI SDK 兼容 API
css·人工智能·typescript·go·shell·powershell
后端小肥肠1 小时前
公众号对标账号文章总错过?用 WeWe-RSS+ n8n,对标文章定时到你的邮箱(下篇教程)
人工智能·agent
Gloria_niki1 小时前
目标检测学习总结
人工智能·计算机视觉·目标跟踪