CUDA小白 - NPP(2) - Arithmetic and Logical Operations(2)

cuda小白

原始API链接 NPP

GPU架构近些年也有不少的变化,具体的可以参考别的博主的介绍,都比较详细。还有一些cuda中的专有名词的含义,可以参考《详解CUDA的Context、Stream、Warp、SM、SP、Kernel、Block、Grid》

常见的NppStatus,可以看这里

如有问题,请指出,谢谢

Logical Operations

逻辑操作主要就是与、或、异或、右移、左移,非等逻辑操作,同样还是分为两个大类,一个是基于单张图像和常数的,另外一个是基于多张图像的。

AndC

第一大类以AndC为例子,主要是就是比较图像与提供的constant(每个通道一个值)进行与操作之后的结果。

cpp 复制代码
// 有无I的区别在于是否直接对图像进行操作
NppStatus nppiAndC_8u_C3R(const Npp8u *pSrc1,
						  int nSrc1Step,
					      const Npp8u aConstants[3],
					      Npp8u *pDst,
						  int nDstStep,
						  NppiSize oSizeROI);
NppStatus nppiAndC_8u_C3IR(const Npp8u aConstants[3],
						   Npp8u *pSrcDst,
						   int nSrcDstStep,
						   NppiSize oSizeROI);
code
cpp 复制代码
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>

#define PRINT_VALUE(value) {  \
  std::cout << "[GPU] " << #value << " = " << value << std::endl; }

#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }

int main() {
  std::string directory = "../";
  // =============== load image ===============
  cv::Mat image = cv::Mat(500, 500, CV_8UC3, cv::Scalar(255, 255, 255));
  cv::Rect rc1 = cv::Rect(150, 150, 200, 200);
  cv::Rect rc2 = cv::Rect(200, 200, 200, 200);
  cv::Rect rc3 = cv::Rect(300, 0, 100, 200);
  cv::Rect rc4 = cv::Rect(0, 0, 200, 100);
  cv::Mat(200, 200, CV_8UC3, cv::Scalar(75, 75, 75)).copyTo(image(rc1));
  cv::Mat(200, 200, CV_8UC3, cv::Scalar(100, 100, 100)).copyTo(image(rc2));
  cv::Mat(200, 100, CV_8UC3, cv::Scalar(125, 125, 125)).copyTo(image(rc3));
  cv::Mat(100, 200, CV_8UC3, cv::Scalar(150, 150, 150)).copyTo(image(rc4));
  cv::imwrite(directory + "orin.jpg", image);

  int image_width = image.cols;
  int image_height = image.rows;
  int image_size = image_width * image_height * 3;
  std::cout << "Image info : image_width = " << image_width
            << ", image_height = " << image_height << std::endl;

  // =============== malloc && cpy ===============
  uint8_t *in_ptr;
  cudaMalloc((void**)&in_ptr, image_size * sizeof(uint8_t));
  cudaMemcpy(in_ptr, image.data, image_size, cudaMemcpyHostToDevice);

  uint8_t *out_ptr, *out_ptr1;
  cudaMalloc((void**)&out_ptr, image_size * sizeof(uint8_t));
  cudaMalloc((void**)&out_ptr1, image_size * sizeof(uint8_t));
  
  NppiSize roi1, roi2;
  roi1.width = image_width;
  roi1.height = image_height;
  roi2.width = image_width / 2;
  roi2.height = image_height / 2;

  uint8_t constant[3] = { (uint8_t)100, (uint8_t)100, (uint8_t)100 };

  // nppiAdd_8u_C3RSfs
  cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);
  cv::Mat out_image1 = cv::Mat::zeros(image_height, image_width, CV_8UC3);
  NppStatus status;
  status = nppiAndC_8u_C3R(in_ptr, image_width * 3, constant, out_ptr, 
                           image_width * 3, roi1);
  if (status != NPP_SUCCESS) {
    std::cout << "[GPU] ERROR nppiAndC_8u_C3R failed, status = " << status << std::endl;
    return false;
  }
  cudaMemcpy(out_image.data, out_ptr, image_size, cudaMemcpyDeviceToHost);
  cv::imwrite(directory + "and.jpg", out_image);

  status = nppiAndC_8u_C3R(in_ptr, image_width * 3, constant, out_ptr1, 
                           image_width * 3, roi2);
  if (status != NPP_SUCCESS) {
    std::cout << "[GPU] ERROR nppiAndC_8u_C3R failed, status = " << status << std::endl;
    return false;
  }
  cudaMemcpy(out_image1.data, out_ptr1, image_size, cudaMemcpyDeviceToHost);
  cv::imwrite(directory + "and_roi.jpg", out_image1);

  // free
  CUDA_FREE(in_ptr)
  CUDA_FREE(out_ptr)
  CUDA_FREE(out_ptr1)
}
make
cpp 复制代码
cmake_minimum_required(VERSION 3.20)
project(test)

find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")

add_executable(test test.cpp)
target_link_libraries(test
                      ${OpenCV_LIBS}
                      ${CUDA_LIBS}
)
result

注意点:

  1. 该函数是将图像的三个通道分别于Constant的值进行按位与的操作,测试的例子中分别使用了255,75, 100, 125, 150三种像素,与100与之后分别为100,4,4,100,100,4。
  2. 由于roi的存在,可以仅保存roi区域内的结果,也就是说输出的地址其可以仅申请roi的区域的大小。
And

针对两张图的操作,包含与、或、非、异或。

cpp 复制代码
NppStatus nppiAnd_8u_C3R(const Npp8u *pSrc1,
						 int nSrc1Step,
					 	 const Npp8u *pSrc2,
					  	 int nSrc2Step,
					 	 Npp8u *pDst,
						 int nDstStep,
						 NppiSize oSizeROI);
	
NppStatus nppiAnd_8u_C3IR(const Npp8u *pSrc,
						  int nSrcStep,
						  Npp8u *pSrcDst,
						  int nSrcDstStep,
						  NppiSize oSizeROI);
code
cpp 复制代码
#include <iostream>
#include <cuda_runtime.h>
#include <npp.h>
#include <opencv2/opencv.hpp>

#define PRINT_VALUE(value) {  \
  std::cout << "[GPU] " << #value << " = " << value << std::endl; }

#define CUDA_FREE(ptr) { if (ptr != nullptr) { cudaFree(ptr); ptr = nullptr; } }

int main() {
  std::string directory = "../";

  // =============== load image ===============
  cv::Mat image_dog = cv::imread(directory + "dog.png");
  int image_width = image_dog.cols;
  int image_height = image_dog.rows;
  int image_size = image_width * image_height * 3;

  cv::Mat image = cv::Mat(image_height, image_width, CV_8UC3, cv::Scalar(100, 125, 150));
  
  std::cout << "Image info : image_width = " << image_width
            << ", image_height = " << image_height << std::endl;

  // =============== malloc && cpy ===============
  uint8_t *in_ptr, *mask;
  cudaMalloc((void**)&in_ptr, image_size * sizeof(uint8_t));
  cudaMalloc((void**)&mask, image_size * sizeof(uint8_t));
  cudaMemcpy(in_ptr, image_dog.data, image_size, cudaMemcpyHostToDevice);
  cudaMemcpy(mask, image.data, image_size, cudaMemcpyHostToDevice);

  uint8_t *out_ptr, *out_ptr1;
  cudaMalloc((void**)&out_ptr, image_size * sizeof(uint8_t));
  cudaMalloc((void**)&out_ptr1, image_size * sizeof(uint8_t));
  
  NppiSize roi1, roi2;
  roi1.width = image_width;
  roi1.height = image_height;
  roi2.width = image_width / 2;
  roi2.height = image_height / 2;

  // nppiAdd_8u_C3RSfs
  cv::Mat out_image = cv::Mat::zeros(image_height, image_width, CV_8UC3);
  cv::Mat out_image1 = cv::Mat::zeros(image_height, image_width, CV_8UC3);
  NppStatus status;
  status = nppiAnd_8u_C3R(in_ptr, image_width * 3, mask, image_width * 3, out_ptr, 
                          image_width * 3, roi1);
  if (status != NPP_SUCCESS) {
    std::cout << "[GPU] ERROR nppiAnd_8u_C3R failed, status = " << status << std::endl;
    return false;
  }
  cudaMemcpy(out_image.data, out_ptr, image_size, cudaMemcpyDeviceToHost);
  cv::imwrite(directory + "and.jpg", out_image);

  status = nppiAnd_8u_C3R(in_ptr, image_width * 3, mask, image_width * 3, out_ptr1, 
                          image_width * 3, roi2);
  if (status != NPP_SUCCESS) {
    std::cout << "[GPU] ERROR nppiAnd_8u_C3R failed, status = " << status << std::endl;
    return false;
  }
  cudaMemcpy(out_image1.data, out_ptr1, image_size, cudaMemcpyDeviceToHost);
  cv::imwrite(directory + "and_roi.jpg", out_image1);

  // free
  CUDA_FREE(in_ptr)
  CUDA_FREE(out_ptr)
  CUDA_FREE(out_ptr1)
}
make
cpp 复制代码
cmake_minimum_required(VERSION 3.20)
project(test)

find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})

find_package(CUDA REQUIRED)
include_directories(${CUDA_INCLUDE_DIRS})
file(GLOB CUDA_LIBS "/usr/local/cuda/lib64/*.so")

add_executable(test test.cpp)
target_link_libraries(test![请添加图片描述](https://img-blog.csdnimg.cn/ce7447a784744aa88e9818c5b8c7a5e6.png)

                      ${OpenCV_LIBS}
                      ${CUDA_LIBS}
)
result

Alpha Composition

主要功能是图像的合成(AlphaComp)以及图像的不透明度调整(AlphaPremulC)。

AlphaCompC

该接口主要完成的两张图像(单通道,三通道,四通道)的合成,主要是操作是根据NppiAlphaOp来完成一定的操作。

cpp 复制代码
NppStatus nppiAlphaCompC_8u_C3R(const Npp8u *pSrc1,
								int nSrc1Step,
								Npp8u nAlpha1,
								const Npp8u *pSrc2,
								int nSrc2Step,
								Npp8u nAlpha2,
								Npp8u *pDst,
								int nDstStep,
								NppiSize oSizeROI,
								NppiAlphaOp eAlphaOp);

AlphaComp

该接口主要完成的两张单通道或者四通道的图像的合成。主要是操作是根据NppiAlphaOp来完成一定的操作。

cpp 复制代码
NppStatus nppiAlphaComp_8u_AC1R(const Npp8u *pSrc1,
								int nSrc1Step,
								const Npp8u *pSrc2,
								int nSrc2Step,
								Npp8u *pDst,
								int nDstStep,
								NppiSize oSizeROI,
								NppiAlphaOp eAlphaOp);

与AlphaCompC的区别在于,AlphaCompC可以指定每个输入图像的比例来完成对应的Operation,而AlphaComp则是没有。

相关推荐
UestcXiye1 小时前
《TCP/IP网络编程》学习笔记 | Chapter 3:地址族与数据序列
c++·计算机网络·ip·tcp
霁月风3 小时前
设计模式——适配器模式
c++·适配器模式
jrrz08283 小时前
LeetCode 热题100(七)【链表】(1)
数据结构·c++·算法·leetcode·链表
咖啡里的茶i3 小时前
Vehicle友元Date多态Sedan和Truck
c++
海绵波波1073 小时前
Webserver(4.9)本地套接字的通信
c++
@小博的博客3 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
爱吃喵的鲤鱼4 小时前
linux进程的状态之环境变量
linux·运维·服务器·开发语言·c++
7年老菜鸡5 小时前
策略模式(C++)三分钟读懂
c++·qt·策略模式
Ni-Guvara5 小时前
函数对象笔记
c++·算法
似霰5 小时前
安卓智能指针sp、wp、RefBase浅析
android·c++·binder