001图机器学习与图神经网络简介

文章目录

  • [一. 无处不在的图](#一. 无处不在的图)
  • [二. 如何对图数据做信息挖掘](#二. 如何对图数据做信息挖掘)
  • [三. 图神经网络](#三. 图神经网络)
  • [四. 图机器学习常用的编程工具](#四. 图机器学习常用的编程工具)
  • [五. 图的可视化工具](#五. 图的可视化工具)
  • [六. 常见的图数据库](#六. 常见的图数据库)
  • [七. 图机器学习的应用举例](#七. 图机器学习的应用举例)
  • [八. 结束语](#八. 结束语)

一. 无处不在的图

  • 一切具有关联关系的数据都可以用图来表示。比如:交通网、知识图谱、分子结构、人际关系网、计算机网络架构、基因与蛋白质表征关系等。

二. 如何对图数据做信息挖掘

  • 对于没有关联的、独立同分布的数据,传统机器学习中的CNN、RNN、Transformer算法就可以对数据很好的进行信息挖掘。
  • 图机器学习与图神经网络就是专门处理图数据的方法。
  • 图数据的特点:
  1. 图是动态变化的;
  2. 图的尺寸应该是任意的;
  3. 图的特征一般是多模态的;
  4. 图是没有固定的节点顺序或参考锚点的。

三. 图神经网络

  • 图神经网络可以实现端到端的表示学习:
  1. 输入:图数据;
  2. 输出:新的图、新的子图、节点的类别、节点间的新连接。
  • 所谓的表示学习,可以理解成图神经网络将节点信息映射成一个 d 维的向量。
  • 这个 d 维的向量包含了该节点自身的信息以及它的连接信息。
  • 这个过程也称为图嵌入。

四. 图机器学习常用的编程工具

  1. PyG
  2. GraphGym
  3. NetworkX
  4. DGL

五. 图的可视化工具

  1. AntV可视化
  2. Echarts可视化
  3. graphxr可视化

六. 常见的图数据库

  • Neo4j

七. 图机器学习的应用举例

  • 节点层面:根据已知的节点类别推测未知的节点类别;
  • 连接层面:根据已知的连接推测未知的连接(推荐系统、药物联合副作用);
  • 子图层面:聚类、社群检测、导航系统;
  • 整图层面:图分类、图生成(生成一种新的分子并预测其理化性质、物理模型模拟、预测蛋白质的空间结构)。

八. 结束语

  • 在工业、医疗、商业等生活中的方方面面,图的应用都正在并要一直大放异彩。
  • 掌握了处理图的能力,就是掌握了窥探这个世界的不二法门。
相关推荐
小黄人202523 分钟前
自动驾驶安全技术的演进与NVIDIA的创新实践
人工智能·安全·自动驾驶
ZStack开发者社区1 小时前
首批 | 云轴科技ZStack加入施耐德电气技术本地化创新生态
人工智能·科技·云计算
X Y O2 小时前
神经网络初步学习3——数据与损失
人工智能·神经网络·学习
kngines2 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
唯创知音2 小时前
玩具语音方案选型决策OTP vs Flash 的成本功耗与灵活性
人工智能·语音识别
Jamence2 小时前
多模态大语言模型arxiv论文略读(151)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
tongxianchao2 小时前
LaCo: Large Language Model Pruning via Layer Collapse
人工智能·语言模型·剪枝
HyperAI超神经3 小时前
OmniGen2 多模态推理×自我纠正双引擎,引领图像生成新范式;95 万分类标签!TreeOfLife-200M 解锁物种认知新维度
人工智能·数据挖掘·数据集·图像生成·医疗健康·在线教程·数学代码
网安INF3 小时前
深度学习中批标准化与神经网络调优
人工智能·深度学习·神经网络·机器学习
开开心心_Every3 小时前
便捷的电脑自动关机辅助工具
开发语言·人工智能·pdf·c#·电脑·音视频·sublime text