001图机器学习与图神经网络简介

文章目录

  • [一. 无处不在的图](#一. 无处不在的图)
  • [二. 如何对图数据做信息挖掘](#二. 如何对图数据做信息挖掘)
  • [三. 图神经网络](#三. 图神经网络)
  • [四. 图机器学习常用的编程工具](#四. 图机器学习常用的编程工具)
  • [五. 图的可视化工具](#五. 图的可视化工具)
  • [六. 常见的图数据库](#六. 常见的图数据库)
  • [七. 图机器学习的应用举例](#七. 图机器学习的应用举例)
  • [八. 结束语](#八. 结束语)

一. 无处不在的图

  • 一切具有关联关系的数据都可以用图来表示。比如:交通网、知识图谱、分子结构、人际关系网、计算机网络架构、基因与蛋白质表征关系等。

二. 如何对图数据做信息挖掘

  • 对于没有关联的、独立同分布的数据,传统机器学习中的CNN、RNN、Transformer算法就可以对数据很好的进行信息挖掘。
  • 图机器学习与图神经网络就是专门处理图数据的方法。
  • 图数据的特点:
  1. 图是动态变化的;
  2. 图的尺寸应该是任意的;
  3. 图的特征一般是多模态的;
  4. 图是没有固定的节点顺序或参考锚点的。

三. 图神经网络

  • 图神经网络可以实现端到端的表示学习:
  1. 输入:图数据;
  2. 输出:新的图、新的子图、节点的类别、节点间的新连接。
  • 所谓的表示学习,可以理解成图神经网络将节点信息映射成一个 d 维的向量。
  • 这个 d 维的向量包含了该节点自身的信息以及它的连接信息。
  • 这个过程也称为图嵌入。

四. 图机器学习常用的编程工具

  1. PyG
  2. GraphGym
  3. NetworkX
  4. DGL

五. 图的可视化工具

  1. AntV可视化
  2. Echarts可视化
  3. graphxr可视化

六. 常见的图数据库

  • Neo4j

七. 图机器学习的应用举例

  • 节点层面:根据已知的节点类别推测未知的节点类别;
  • 连接层面:根据已知的连接推测未知的连接(推荐系统、药物联合副作用);
  • 子图层面:聚类、社群检测、导航系统;
  • 整图层面:图分类、图生成(生成一种新的分子并预测其理化性质、物理模型模拟、预测蛋白质的空间结构)。

八. 结束语

  • 在工业、医疗、商业等生活中的方方面面,图的应用都正在并要一直大放异彩。
  • 掌握了处理图的能力,就是掌握了窥探这个世界的不二法门。
相关推荐
AI人工智能+1 天前
行驶证识别技术通过OCR和AI实现信息自动化采集与处理,涵盖图像预处理、文字识别及结构化校验,提升效率与准确性
人工智能·深度学习·ocr·行驶证识别
EkihzniY1 天前
医疗发票 OCR 识别:打通医疗费用处理 “堵点” 的技术助手
大数据·人工智能·ocr
慷仔1 天前
游戏编程模式-享元模式(Flyweight)
人工智能·游戏·享元模式
dlraba8021 天前
Pandas:机器学习数据处理的核心利器
人工智能·机器学习·pandas
m0_677034351 天前
机器学习-推荐系统(上)
人工智能·机器学习
箫乾1 天前
第78篇:AI+交通:自动驾驶、智能交通管理与物流优化
人工智能·机器学习·自动驾驶
许泽宇的技术分享1 天前
从零到一:基于.NET 9.0构建企业级AI智能体对话平台的实战之旅
人工智能·.net·ai智能体·a2a协议·agent framework
Rewloc1 天前
智能体提示词:软件开发超级个体
人工智能·提示词·智能体·智能体提示词
算家计算1 天前
马斯克挖角英伟达核心团队,xAI加速研发“世界模型”布局游戏与机器人
人工智能·资讯
乐迪信息1 天前
乐迪信息:智慧煤矿输送带安全如何保障?AI摄像机全天候识别
大数据·运维·人工智能·安全·自动化·视觉检测