001图机器学习与图神经网络简介

文章目录

  • [一. 无处不在的图](#一. 无处不在的图)
  • [二. 如何对图数据做信息挖掘](#二. 如何对图数据做信息挖掘)
  • [三. 图神经网络](#三. 图神经网络)
  • [四. 图机器学习常用的编程工具](#四. 图机器学习常用的编程工具)
  • [五. 图的可视化工具](#五. 图的可视化工具)
  • [六. 常见的图数据库](#六. 常见的图数据库)
  • [七. 图机器学习的应用举例](#七. 图机器学习的应用举例)
  • [八. 结束语](#八. 结束语)

一. 无处不在的图

  • 一切具有关联关系的数据都可以用图来表示。比如:交通网、知识图谱、分子结构、人际关系网、计算机网络架构、基因与蛋白质表征关系等。

二. 如何对图数据做信息挖掘

  • 对于没有关联的、独立同分布的数据,传统机器学习中的CNN、RNN、Transformer算法就可以对数据很好的进行信息挖掘。
  • 图机器学习与图神经网络就是专门处理图数据的方法。
  • 图数据的特点:
  1. 图是动态变化的;
  2. 图的尺寸应该是任意的;
  3. 图的特征一般是多模态的;
  4. 图是没有固定的节点顺序或参考锚点的。

三. 图神经网络

  • 图神经网络可以实现端到端的表示学习:
  1. 输入:图数据;
  2. 输出:新的图、新的子图、节点的类别、节点间的新连接。
  • 所谓的表示学习,可以理解成图神经网络将节点信息映射成一个 d 维的向量。
  • 这个 d 维的向量包含了该节点自身的信息以及它的连接信息。
  • 这个过程也称为图嵌入。

四. 图机器学习常用的编程工具

  1. PyG
  2. GraphGym
  3. NetworkX
  4. DGL

五. 图的可视化工具

  1. AntV可视化
  2. Echarts可视化
  3. graphxr可视化

六. 常见的图数据库

  • Neo4j

七. 图机器学习的应用举例

  • 节点层面:根据已知的节点类别推测未知的节点类别;
  • 连接层面:根据已知的连接推测未知的连接(推荐系统、药物联合副作用);
  • 子图层面:聚类、社群检测、导航系统;
  • 整图层面:图分类、图生成(生成一种新的分子并预测其理化性质、物理模型模拟、预测蛋白质的空间结构)。

八. 结束语

  • 在工业、医疗、商业等生活中的方方面面,图的应用都正在并要一直大放异彩。
  • 掌握了处理图的能力,就是掌握了窥探这个世界的不二法门。
相关推荐
neardi临滴科技2 分钟前
Neardi Pi 4-3588:开启 8K 极速智能,赋能企业级边缘计算新时代
人工智能·嵌入式硬件·边缘计算·rk3588·开发板
思通数据3 分钟前
AI智能预警系统:矿山、工厂与油气站安全管理架构浅析
人工智能·深度学习·安全·目标检测·机器学习·计算机视觉·架构
敖行客 Allthinker4 分钟前
【无标题】
人工智能·创业创新
JAVA+C语言5 分钟前
CAXA 3D 实体设计 2025:国产三维 CAD 的全流程研发升级下载安装
人工智能
SJLoveIT6 分钟前
神经网络反向传播推导笔记 (整理版)
人工智能·笔记·神经网络
love530love13 分钟前
【笔记】华硕 ROG MAXIMUS Z890 HERO 主板 BIOS 更新完整操作实录
运维·人工智能·windows·笔记·单片机·嵌入式硬件·bios
深度学习实战训练营14 分钟前
Monodepth:基于左右一致性的无监督单目深度估计,单目估计的起步-k学长深度学习专栏
人工智能·深度学习
逐梦苍穹16 分钟前
为什么 AI 时代用 macOS 更好(以及如何少踩坑)
人工智能·macos
碎碎思19 分钟前
FINN:FPGA AI 推理新范式 —— 定制化、高性能、量化神经网络编译器框架
人工智能·深度学习·神经网络·机器学习·fpga开发
光锥智能24 分钟前
钉钉发布全球首个工作智能操作系统Agent OS,重构AI时代的工作方式
人工智能·重构·钉钉