【数据分析】统计量

  1. 均值、众数描述数据的集中趋势度量,四分位差、极差描述数据的离散程度。

  2. 标准差、四分位差、异众比率度量离散程度,协方差是度量相关性。

期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

从直观上来看,协方差表示的是两个变量总体误差的期望。

如果XY 是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E [XY ]=E [X ]E [Y]。

但是,反过来并不成立。即如果XY的协方差为0,二者并不一定是统计独立的。

  1. 卡方检验可以分析++分类变量之间的相关性++ 。http://t.csdn.cn/SZSy6

  2. t检验:t检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 ++只能分析数值型变量。++

  1. 皮尔逊相关系数是一种衡量变量之间线性关系强弱的统计量。它的取值范围在-1到1之间,可以反映出两个变量之间的相关程度。如果相关系数接近1,表明两个变量之间存在完全正向的线性关系;如果接近-1,则说明存在完全负向的线性关系;如果接近0,则表示两个变量之间没有线性关系。

皮尔逊相关系数的计算方法如下:

r = Cov(X, Y) / (σX * σY)

其中,Cov(X, Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。通过计算协方差和标准差,我们可以得到两个变量之间的相关系数。

++只能分析数值型变量。++

例子:百度安全验证

  1. 列联相关:列联相关又称列联相关系数(contingencycorrelation)又称均方相依系数或接触系数,是指当两列数据中至少有一列是++多分类资料++时,描述变量之间的相互关系的品质相关系数。

可以分析++分类变量之间的相关性++。

  1. SQL中的关键字:float浮点型、int 整数型、char 文本型、decimal 定点型

  2. HAVING 子句中的筛选字段必须是可以出现在分组结果中的字段

  3. 多维数据库------雪花模式

雪花模式是集中代表事实表的连接到多个层面 ,是类似星型模式

星型模型:星型模式是多维的数据关系,它由事实表(Fact Table)和维表(Dimension Table)组成。每个维表中都会有一个维作为主键,所有这些维的主键结合成事实表的主键。事实表的非主键属性称为事实,它们一般都是数值或其他可以进行计算的数据。

交叉模型:

相关推荐
OLOLOadsd12323 分钟前
白蚁检测与分类系统:基于YOLOv8的白蚁本体和翅膀识别模型实现
yolo·分类·数据挖掘
耿小洋44 分钟前
匡优 Excel 数据分析指令模板清单:从入门到实战
大数据·人工智能·数据挖掘
OLOLOadsd1231 小时前
YOLO11改进_C3k2-ODConv优化_车轮缺陷检测与分类系统_裂纹划痕识别_原创
人工智能·分类·数据挖掘
Dingdangcat861 小时前
基于YOLO11分割的弹簧质量检测与分类系统RepNCSPELAN_CAA模型训练与实现
人工智能·分类·数据挖掘
没有梦想的咸鱼185-1037-16631 小时前
AI大模型支持下的:R-Meta分析核心技术:从热点挖掘到高级模型、助力高效科研与论文发表
开发语言·人工智能·机器学习·chatgpt·数据分析·r语言·ai写作
2501_936146041 小时前
基于YOLO11多骨干网络的太阳能面板检测与地表覆盖分类研究
人工智能·分类·数据挖掘
Sylvia33.1 小时前
如何获取足球数据统计数据API
java·前端·python·websocket·数据挖掘
2501_9361460410 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
B站计算机毕业设计超人14 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
德昂信息dataondemand15 小时前
销售分析中的痛点与解决之道
大数据·数据分析