Hadoop MapReduce 调优参数

文章目录

      • [MapReduce 调优参数详解](#MapReduce 调优参数详解)
      • [MapReduce 调优参数一键复制](#MapReduce 调优参数一键复制)

前言:

下列参数基于 hadoop v3.1.3 版本,共三台服务器,配置都为 4 核,4G 内存。

MapReduce 调优参数详解

这个参数定义了在 Reduce 阶段同时进行的拷贝操作的数量,用于从 Map 任务获取数据,增加此值可以加速 Shuffle 阶段的执行。

xml 复制代码
<property>
    <name>mapreduce.reduce.shuffle.parallelcopies</name>
    <value>10</value>
</property>

默认值: 5
建议配置: 10

定义了在 Reduce 阶段输入数据缓冲区的百分比,缓冲更多的数据可以减少磁盘 IO。

xml 复制代码
<property>
    <name>mapreduce.reduce.shuffle.input.buffer.percent</name>
    <value>0.8</value>
</property>

默认值: 0.7
建议配置: 0.8

定义了在 Reduce 阶段执行 merge 操作的阈值,决定何时将中间数据合并到较大的文件中以减少文件数目。

xml 复制代码
<property>
    <name>mapreduce.reduce.shuffle.merge.percent</name>
    <value>0.75</value>
</property>

默认值: 0.66
建议配置: 0.75

设置 Map 任务的 Java 堆内存大小。

xml 复制代码
<property>
    <name>mapreduce.map.java.opts</name>
    <value>-Xmx2048m</value>
</property>

默认值: 未指定(取决于集群的配置)。
建议配置: -Xmx2048m,将堆内存大小设置为 2G

设置 Reduce 任务的 Java 堆内存大小。

xml 复制代码
<property>
    <name>mapreduce.reduce.java.opts</name>
    <value>-Xmx2048m</value>
</property>

默认值: 未指定(取决于集群的配置)。
建议配置: -Xmx2048m,将堆内存大小设置为 2G

定义了每个 Map 任务使用的虚拟 CPU 核心数量。

xml 复制代码
<property>
    <name>mapreduce.map.cpu.vcores</name>
    <value>2</value>
</property>

默认值: 1
建议配置: 2

定义了每个 Reduce 任务使用的虚拟 CPU 核心数量。

xml 复制代码
<property>
    <name>mapreduce.reduce.cpu.vcores</name>
    <value>2</value>
</property>

默认值: 1
建议配置: 2

定义了 Map 任务最大的重试次数。

xml 复制代码
<property>
    <name>mapreduce.map.maxattempts</name>
    <value>4</value>
</property>

默认值: 4
建议配置: 4(默认值),保持默认值即可。

定义了 Reduce 任务最大的重试次数。

xml 复制代码
<property>
    <name>mapreduce.reduce.maxattempts</name>
    <value>4</value>
</property>

默认值: 4
建议配置: 4(默认值)。保持默认值即可。

定义了在 Reduce 阶段开始之前要完成的 Map 任务的比例。

xml 复制代码
<property>
    <name>mapreduce.job.reduce.slowstart.completedmaps</name>
    <value>0.2</value>
</property>

默认值: 0.05
建议配置: 0.2。由于集群只有三台机器,提高此值有助于确保在进行 Reduce 阶段之前有足够的数据可供处理。

定义了任务的最大执行时间(以毫秒为单位)。如果任务执行超过此时间,将被认为失败。

xml 复制代码
<property>
    <name>mapreduce.task.timeout</name>
    <value>600000</value>
</property>

默认值: 600000(10分钟)
建议配置: 600000(默认值)。可以根据任务的复杂性和数据量适当调整。

定义了在 Map 阶段进行排序操作时的内存缓冲区大小(以MB为单位)。

xml 复制代码
<property>
    <name>mapreduce.task.io.sort.mb</name>
    <value>200</value>
</property>

默认值: 100
建议配置: 200。适当增加这个值可以提高排序的性能,但不要超过可用内存的一半。

定义了在进行 Map 阶段排序操作时,达到多少内存使用比例时会触发溢写(spill)操作将数据写入磁盘。

xml 复制代码
<property>
    <name>mapreduce.map.sort.spill.percent</name>
    <value>0.85</value>
</property>

默认值: 0.8
建议配置: 0.85

对文件进行排序时一次合并的流数,这决定了打开文件句柄的数量。

xml 复制代码
<property>
    <name>mapreduce.task.io.sort.factor</name>
    <value>20</value>
</property>

默认值: 10
建议配置: 20

定义了每个 Map 任务使用的内存量(以MB为单位)。

xml 复制代码
<property>
    <name>mapreduce.map.memory.mb</name>
    <value>2048</value>
</property>

默认值: 1024
建议配置: 2048

定义了每个 Reduce 任务使用的内存量(以MB为单位)。

xml 复制代码
<property>
    <name>mapreduce.reduce.memory.mb</name>
    <value>2048</value>
</property>

默认值: 1024
建议配置: 2048

MapReduce 调优参数一键复制

下列配置参数基于 hadoop v3.1.3 版本,共三台服务器,配置都为 4 核,4G 内存,上方可以看相关参数的详细解释。

xml 复制代码
	<property>
	    <name>mapreduce.reduce.shuffle.parallelcopies</name>
	    <value>10</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.shuffle.input.buffer.percent</name>
	    <value>0.8</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.shuffle.merge.percent</name>
	    <value>0.75</value>
	</property>
	
	<property>
	    <name>mapreduce.map.java.opts</name>
	    <value>-Xmx2048m</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.java.opts</name>
	    <value>-Xmx2048m</value>
	</property>
	
	<property>
	    <name>mapreduce.map.cpu.vcores</name>
	    <value>2</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.cpu.vcores</name>
	    <value>2</value>
	</property>
	
	<property>
	    <name>mapreduce.map.maxattempts</name>
	    <value>4</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.maxattempts</name>
	    <value>4</value>
	</property>
	
	<property>
	    <name>mapreduce.job.reduce.slowstart.completedmaps</name>
	    <value>0.2</value>
	</property>
	
	<property>
	    <name>mapreduce.task.timeout</name>
	    <value>600000</value>
	</property>
	
	<property>
	    <name>mapreduce.task.io.sort.mb</name>
	    <value>200</value>
	</property>
	
	<property>
	    <name>mapreduce.map.sort.spill.percent</name>
	    <value>0.85</value>
	</property>
	
	<property>
	    <name>mapreduce.task.io.sort.factor</name>
	    <value>20</value>
	</property>
	
	<property>
	    <name>mapreduce.map.memory.mb</name>
	    <value>2048</value>
	</property>
	
	<property>
	    <name>mapreduce.reduce.memory.mb</name>
	    <value>2048</value>
	</property>
相关推荐
一缕猫毛1 小时前
Flink demo代码
java·大数据·flink
Hello.Reader1 小时前
Flink ML 基本概念Table API、Stage、Pipeline 与 Graph
大数据·python·flink
pale_moonlight1 小时前
十一、Flink基础环境实战
大数据·flink
beijingliushao1 小时前
103-Spark之Standalone环境测试
大数据·ajax·spark
西格电力科技2 小时前
光伏四可“可观”功能:光伏电站全景数字化的底层支撑技术
大数据·人工智能·架构·能源
TDengine (老段)2 小时前
从关系型数据库到时序数据库的思维转变
大数据·数据库·mysql·时序数据库·tdengine·涛思数据·非关系型数据库
木风小助理2 小时前
Flink CDC:构建实时数据入湖架构的核心引擎
大数据·架构·flink
管理大亨2 小时前
ELK + Redis Docker 企业级部署落地方案
大数据·运维·elk·elasticsearch·docker·jenkins
星川皆无恙2 小时前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱
PM老周2 小时前
DORA2025:如何用AI提升研发效能(以 ONES MCP Server 为例)
大数据·人工智能