Truncation Sampling as Language Model Desmoothing

本文是LLM系列文章,针对《Truncation Sampling as Language Model Desmoothing》的翻译。

截断采样作为语言模型的去平滑性

  • 摘要
  • [1 引言](#1 引言)
  • [2 背景](#2 背景)
  • [3 截断作为去平滑性](#3 截断作为去平滑性)
  • [4 方法](#4 方法)
  • [5 实验与结果](#5 实验与结果)
  • [6 相关工作](#6 相关工作)
  • [7 结论](#7 结论)
  • [8 不足](#8 不足)

摘要

来自神经语言模型的长文本样本可能质量较差。截断采样算法(如top-p或top-k)通过在每一步将一些单词的概率设置为零来解决这一问题。这项工作为截断的目的提供了框架,并为此目的提供了一种改进的算法。我们建议将神经语言模型视为真实分布和平滑分布的混合体,以避免无限的困惑。在这种情况下,截断算法的目的是执行去平滑,估计真实分布的支持子集。找到一个好的子集至关重要:我们表明,top-p不必要地截断了高概率单词,例如,对于以Donald开头的文档,导致它截断了除Trump之外的所有单词。我们引入了 η \eta η采样,它在熵相关概率阈值以下截断单词。与以前的算法相比, η \eta η采样根据人类生成了更可信的长英文文档,更善于打破重复,并且在一组测试分布上表现得更合理。

1 引言

2 背景

3 截断作为去平滑性

4 方法

5 实验与结果

6 相关工作

7 结论

我们已经将这类截断采样算法定义为执行去平滑,这一见解引出了如何进行截断以恢复训练分布的原则,一种新的截断采样算法,以及显示现有算法缺陷的评估。我们发现top-p解码过度截断下熵分布的趋势特别令人惊讶。我们的目标是获得这些见解和我们使用的评估,以推动进一步的研究,了解和改进我们如何从神经语言模型中生成。

8 不足

通过我们所做的分析,我们认为很难理解截断采样算法(包括我们的算法)所具有的所有序列级影响:我们不允许使用什么类型的序列?哪些类型或来源的语言(在不知不觉中)被禁止?除此之外,我们只在英语模型上测试了我们的算法;形态丰富的语言的条件分布可能具有不同的性质(尤其是子词模型)。

相关推荐
Coder_Boy_5 分钟前
基于SpringAI的在线考试系统-DDD(领域驱动设计)核心概念及落地架构全总结 (2)
java·人工智能·spring boot·架构·serverless·ddd·服务网格
Coder_Boy_6 分钟前
基于SpringAI的在线考试系统-考试系统DDD(领域驱动设计)实现步骤详解(2)
java·前端·数据库·人工智能·spring boot
Alphapeople8 分钟前
基于强化学习的集装箱码头智能选位系统
人工智能
北京地铁1号线9 分钟前
人工智能岗位招聘专业笔试试卷及答案
人工智能·深度学习·计算机视觉·大语言模型
d0ublεU0x0010 分钟前
预训练模型
人工智能·机器学习
syounger12 分钟前
日本云 ERP 市场加速升温:数字化转型进入深水区
人工智能
人工智能AI技术12 分钟前
【Agent从入门到实践】08 主流Agent框架与平台:不用从零造轮子,快速上手开发
人工智能
edisao12 分钟前
二。星链真正危险的地方,不在天上,而在网络底层
大数据·网络·人工智能·python·科技·机器学习
Python_Study202513 分钟前
TOB机械制造企业获客困境与技术解决方案:从传统模式到数字化营销的架构升级
大数据·人工智能·架构
Loo国昌16 分钟前
【LangChain1.0】第一篇:基础认知
后端·python·算法·语言模型·prompt