ARM DIY(五)摄像头调试

前言

今天,就着摄像头的调试,从嵌入式工程师的角度,介绍如何从无到有,一步一步地调出一款设备。

摄像头型号:OV2640

开发步骤

分为 2 个阶段 5 个步骤

阶段一:

设备树、驱动、硬件

阶段二:

应用程序、测试

Step 1:设备树

a) 摄像头用到了 I2C 和 CSI 接口,所以要在 pinctrl 节点中添加这两种接口的引脚定义,其中 I2C 使用的是 I2C1

b) 添加 CSI 节点

arch/arm/boot/dts/sun8i-v3s.dtsi

c 复制代码
        pio: pinctrl@1c20800 {            
            i2c1_pins: i2c1-pins {
                pins = "PE21", "PE22";
                function = "i2c1";
            };

            //omit-if-no-ref
            csi1_mclk_pin: csi1-mclk-pin {
                pins = "PE1";
                function = "csi";
            };


            csi1_clk: csi1-clk@0 {
                pins = "PE0","PE2","PE3";
                bias-disable;
                function = "csi";
            };


            csi1_8bit: csi1-8bit@0 {
                pins      = "PE6","PE7","PE8","PE9","PE10","PE11","PE12","PE13","PE14","PE15";
                bias-disable;
                function = "csi";
            };
        }


    soc {
        csi1: csi@1cb4000 {
            compatible = "allwinner,sun8i-v3s-csi";
            reg = <0x01cb4000 0x3000>;
            interrupts = <GIC_SPI 84 IRQ_TYPE_LEVEL_HIGH>;
            clocks = <&ccu CLK_BUS_CSI>,
                    <&ccu CLK_CSI1_SCLK>,
                    <&ccu CLK_DRAM_CSI>;
            clock-names = "bus", "mod", "ram";
            resets = <&ccu RST_BUS_CSI>;
            status = "okay";
        };
    };

c) 使能 I2C 和 CSI 节点

arch/arm/boot/dts/sun8i-v3s-licheepi-zero-dock.dts

c 复制代码
&i2c1 {
    pinctrl-0 = <&i2c1_pins>;
    pinctrl-names = "default";
    clock-frequency = <400000>;
    status = "okay";
    
    ov2640: camera@30 {
        compatible = "ovti,ov2640";
        reg = <0x30>;
        pinctrl-names = "default";
        pinctrl-0 = <&csi1_mclk_pin>;
        clocks = <&ccu CLK_CSI1_MCLK>;
        clock-names = "xvclk";
        assigned-clocks = <&ccu CLK_CSI1_MCLK>;
        assigned-clock-rates = <24000000>;
        port {
            ov2640_0: endpoint {
                remote-endpoint = <&csi1_ep>;
                bus-width = <10>;
            };
        };
    };
};

&csi1 {
    status = "okay";
    pinctrl-names = "default";
    pinctrl-0 = <&csi1_clk &csi1_8bit>;

    port {
        csi1_ep: endpoint {
        remote-endpoint = <&ov2640_0>;
        hsync-active = <0>;
        vsync-active = <0>;
        bus-width = <10>;
            pclk-sample = <1>;
        };
    };

};

Step 2:驱动

使能内核编译选项

c 复制代码
> Device Drivers > Multimedia support > I2C Encoders, decoders, sensors and other helper chips
    <*> OmniVision OV2640 sensor support
bash 复制代码
注意:
要先禁用
> Device Drivers > Multimedia support
    [ ]   Autoselect ancillary drivers (tuners, sensors, i2c, spi, frontends)

不然无法显示
    I2C Encoders, decoders, sensors and other helper chips
选项

Step 3:硬件

焊接 24P FPC 翻盖下接排线连接器

焊接 2.8V LDO、1.5V LDO

焊接电阻电容

测量短路、测量电压、确认外设好坏

Step 4:应用程序

需要用到 i2c-tools、ffmped、fswebcam

在 buildroot Target Packets 中添加

Step 5:测试

step 5.1:I2C 测试

先用 I2C 工具检测摄像头的 I2C 信息

bash 复制代码
# i2cdetect -y 1
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:                         -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --                         
#

没有检测到 I2C 设备,SOC 测 I2C 软件是好的,因为 /dev/i2c-1 设备已产生,并且使用 I2C 工具操作 I2C 控制器也没报错,

所以,可能出现问题的节点

a) SOC I2C 引脚没有输出 I2C 信号

b) 摄像头 I2C 引脚没有收到 I2C 信号

c) 摄像头收到 I2C 信号,但是没有做出响应

d) 摄像头 I2C 做出响应,但是 SOC 解析失败

排查

a) 使用逻辑分析仪抓 SOC I2C 引脚信号,发现 SOC 正常发出 I2C 信号,遍历地址 0~0x77 的设备,但是没有收到任何一个响应

b) 使用万用表量摄像头 I2C 引脚到 SOC I2C 引脚的通断,导通,没问题

c) 从上述两点,可知问题原因是:摄像头收到 I2C 信号,但是没有做出响应

继续排查

c1) 检查摄像头供电,使用万用表测量,电源电压正常

c2) 难道是摄像头坏了?遂将 OV2640 插在 ESP32-CAM 板子上进行测试,可以正常摄像,所以摄像头是好的

c3) dmesg 显示

bash 复制代码
[    1.158234] i2c /dev entries driver
[    1.162410] sun8i-v3s-pinctrl 1c20800.pinctrl: 1c20800.pinctrl supply vcc-pe not found, using dummy regulator
[    1.175129] ov2640 0-0030: Product ID error fa:fa

难道是 vcc-pe 引脚没有电压?

使用万用表测量,发现电压正常

网上搜索该问题,发现可以正常检测到 I2C 的内核 log 中也有该警告,所以应该不是该问题导致

c4) 网上搜到一篇文章《camera调试:i2c不通如何排查?》,介绍了排查 I2C 地址、引脚、供电、reset 引脚、powdn 引脚、上电时序、MCLK 等步骤,我跟着流程依次检查,最后看到 MCLK 时灵光乍现,依稀记得设备树中有配置 MCLK 参数的地方

c 复制代码
	ov2640: camera@30 {
		compatible = "ovti,ov2640";
		reg = <0x30>;
		pinctrl-names = "default";
		pinctrl-0 = <&csi1_mclk_pin>;
		clocks = <&ccu CLK_CSI1_MCLK>;
		clock-names = "xvclk";
		assigned-clocks = <&ccu CLK_CSI1_MCLK>; // 这两行
		assigned-clock-rates = <24000000>;		// 这两行
		port {
			ov2640_0: endpoint {
				remote-endpoint = <&csi1_ep>;
				bus-width = <10>;
			};
		};
	};

这份节点参数我是从网上找的,一般 V3S 的晶振使用的是 24MHz 的,而我使用的是 26MHz 的,问题应是这里,改成 26000000,重新测试

bash 复制代码
[    1.158263] i2c /dev entries driver
[    1.163342] sun8i-v3s-pinctrl 1c20800.pinctrl: 1c20800.pinctrl supply vcc-pe not found, using dummy regulator
[    1.176419] ov2640 1-0030: ov2640 Product ID 26:42 Manufacturer ID 7f:a2
[    1.183768] i2c i2c-1: OV2640 Probed
bash 复制代码
# i2cdetect -y 1
     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f
00:                         -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

可以检测到摄像头 I2C 设备了。

step 5.2:拍照测试

bash 复制代码
fswebcam -S 20 -d /dev/video0 -p UYVY -r 800x600 --dumpframe dump.bin fswebcam.jpg

发现没有 /dev/video0 设备

在网上搜了下产生 /dev/video0 设备的内核编译选项,如下图,需要使能 Allwinner V3s Camera Sensor Interface driver

可是我发现我的 buildroot 中 V4L platform devices 下面并没有该选项

最终,通过在源码的 Kconfig 文件中搜索 Allwinner V3s
再跟着关键字 VIDEO_SUN6I_CSI,在 menuconfig 中一步步搜索,将依赖的编译选项都使能后,终于该选项出现了。使能后,/dev/video0 设备就出现了

bash 复制代码
# ls /dev/video0 -lh
crw-------    1 root     root       81,   0 Jan  1 00:00 /dev/video0

拍照测试

bash 复制代码
fswebcam -S 20 -d /dev/video0 -p UYVY -r 800x600 --dumpframe dump.bin fswebcam.jpg

录像测试

bash 复制代码
ffmpeg -f video4linux2 -s 800x600 -r 30 -i /dev/video0 test.avi

step 5.3:消除横纹

可以看到,上面拍摄的照片和视频有一道道的横纹,网上搜索发现许多人都遇到了这个问题,基本明确问题原因是电源纹波导致,我尝试换了几颗电源滤波电容,还是没能消除横纹,这个硬件问题后面随缘去解吧,缩短布线是个有效的措施。

至此,摄像头调试,功能部分已 OK,性能调优 TO BE DONE(一般再也不 DONE。。。)。

相关推荐
piaoroumi3 小时前
AM62X内核裁剪
arm开发
切糕师学AI3 小时前
ARM 架构中,R14链接寄存器(LR)是什么?
arm开发·寄存器·link register
切糕师学AI4 小时前
ARM多核系统数据一致性深度解析:从硬件协议到软件实践
arm开发·多核·缓存一致性
猫猫的小茶馆6 小时前
【ARM】内核移植(编译)
linux·arm开发·stm32·单片机·嵌入式硬件·mcu·pcb工艺
fruge6 小时前
SIMD 编程实践:在 openEuler 上 x86 AVX 与 ARM Neon 性能探索
arm开发
智算菩萨6 小时前
深度剖析U盘启动WINPE技术体系:从底层原理到企业级应用实践
arm开发·系统安全·系统维护
szxinmai主板定制专家6 小时前
JETSON orin+FPGA+GMSL+AI协作机器人视觉感知
网络·arm开发·人工智能·嵌入式硬件·fpga开发·机器人
无奈笑天下6 小时前
银河麒麟高级服务器版本【更换bond绑定的网卡】操作方法
linux·运维·服务器·arm开发·经验分享
虚伪的空想家7 小时前
arm架构TDengine时序数据库及应用使用K8S部署
服务器·arm开发·架构·kubernetes·arm·时序数据库·tdengine
hnlq1 天前
基于dpdk的用户态协议栈的实现(一)—— dpdk原理
arm开发