LA@特征值和特征向量的性质

文章目录

方阵特征值和特征向量的性质👺

特征值之和

  • ∑ i = 1 n λ i = ∑ i = 1 n a i i \sum\limits_{i=1}^{n}\lambda_i=\sum\limits_{i=1}^{n}a_{ii} i=1∑nλi=i=1∑naii
    • 其中 ∑ i = 1 n a i i \sum_{i=1}^{n}a_{ii} ∑i=1naii称为矩阵的迹,记为 T r ( A ) Tr(\bold A) Tr(A)

特征值之积

  • ∏ i = 1 n λ i = ∣ A ∣ \prod_{i=1}^{n}\lambda_{i}=|A| ∏i=1nλi=∣A∣

推论:特征值判定方阵的可逆性

  • 方阵 A \bold{A} A可逆 的条件是其的特征值不全为0
  • 证明:
    • 由特征值之积的性质可知,当方阵 A \bold{A} A的特征值之积不为0,意味着 ∣ A ∣ ≠ 0 |\bold{A}|\neq{0} ∣A∣=0从而 A \bold{A} A是可逆的

证明

  • 借助多项式的知识来同时证明上述两条性质(同次项系数相等原理)

  • 对于

    • f ( λ ) = ∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 − a n 2 ⋯ λ − a n n ∣ f(\lambda)=|\lambda{E}-A|= \begin{vmatrix} \lambda-a_{11}& -a_{12}& \cdots&-a_{1n} \\ -a_{21}& \lambda-a_{22}& \cdots&-a_{2n} \\ \vdots& \vdots& &\vdots \\ -a_{n1}& -a_{n2}& \cdots&\lambda-a_{nn} \\ \end{vmatrix} f(λ)=∣λE−A∣= λ−a11−a21⋮−an1−a12λ−a22⋮−an2⋯⋯⋯−a1n−a2n⋮λ−ann

    • f ( λ ) f(\lambda) f(λ)行列式展开后有 n ! n! n!项(未合并化简同类项前),把它们记为 θ k , k = 1 , 2 , ⋯   , n ! \theta_k,k=1,2,\cdots,n! θk,k=1,2,⋯,n!, θ k = ( − 1 ) τ ( p k ) ∏ i = 1 n a i , j i \theta_k=(-1)^{\tau(p_k)}\prod_{i=1}^{n}a_{i,j_i} θk=(−1)τ(pk)∏i=1nai,ji,其中 p k p_k pk是第 k k k个 n n n级排列 ( j 1 , ⋯   , j n ) (j_1,\cdots,j_n) (j1,⋯,jn)

    • 将合并同类相(多项式的一般形式): f ( λ ) f(\lambda) f(λ)= ∑ i = 0 n a i λ i \sum_{i=0}^{n}a_i\lambda^{i} ∑i=0naiλi <1>

      • <1>式中有1项是由主对角线元素相乘的积,是 n n n次项,同时也是最高次项),把它记为

        • θ d = ( λ − a 11 ) ( λ − a 22 ) ⋯ ( λ − a n n ) \theta_d=(\lambda-a_{11})(\lambda-a_{22})\cdots(\lambda-a_{nn}) θd=(λ−a11)(λ−a22)⋯(λ−ann),这也是一个关于 λ \lambda λ,的 n n n次多项式
      • 其余项至多含有对角线元素的 n − 2 n-2 n−2个元素(次高项的次数为 n − 2 n-2 n−2)

        • 因为每个项的因子都取自不同行不同列
        • 事实上,行列式展开的的 n ! n! n!项求和式中,每一项都包含行列式中的某 n n n个元素的乘积作为因式,如果因式中不包含某个对角线元素(设取自第 i i i行的元素不来自第 i i i列,记为 e 1 e_1 e1),那么必定存在一个元素(设取自第 j j j行,记为 e 2 e_2 e2)是来自第 i i i列的,这就导致第 i , j i,j i,j行取出的元素 e 1 , e 2 e_1,e_2 e1,e2都不是对角线上的元素( i ≠ j i\neq{j} i=j)
      • 因此,容易确定<1>中 a n , a n − 1 a_n,a_{n-1} an,an−1都是由 θ d \theta_{d} θd所确定的

      • 现在,我们只对 ξ \xi ξ这一项感兴趣,由多项式相关知识,容易做出以下推导

        • θ d \theta_d θd= λ n − ( a 11 + a 22 + ⋯ + a n n ) λ n − 1 + ⋯ \lambda^{n}-(a_{11}+a_{22}+\cdots+a_{nn})\lambda^{n-1}+\cdots λn−(a11+a22+⋯+ann)λn−1+⋯
        • f ( λ ) f(\lambda) f(λ)= θ d + ∑ i , i ≠ d n ! θ i \theta_d+\sum\limits_{i,i\neq{d}}^{n!}\theta_i θd+i,i=d∑n!θi
          • 展开式中 n , n − 1 n,n-1 n,n−1次项的系数是只由 θ d \theta_d θd提供,其余 θ i , i ≠ p \theta_i,i\neq{p} θi,i=p只能够提供不超过 n − 2 n-2 n−2次项;
          • a n = 1 a_n=1 an=1; a n − 1 = − ∑ i = 1 n a i i a_{n-1}=-\sum_{i=1}^{n}a_{ii} an−1=−∑i=1naii;
          • 常数项 a 0 a_0 a0可以通过取 λ = 0 \lambda=0 λ=0得到,即 a 0 = f ( 0 ) = ∣ 0 E − A ∣ = ∣ − A ∣ = ( − 1 ) n ∣ A ∣ a_0=f(0)=|\bold{0E-A}|=|-\bold{A}|=(-1)^n|\bold{A}| a0=f(0)=∣0E−A∣=∣−A∣=(−1)n∣A∣
        • f ( λ ) = λ n − ( ∑ i = 1 n a i i ) λ n − 1 + ⋯ ∣ − A ∣ λ 0 f(\lambda)=\lambda^{n}-(\sum_{i=1}^{n}a_{ii})\lambda^{n-1}+\cdots|-A|\lambda^{0} f(λ)=λn−(∑i=1naii)λn−1+⋯∣−A∣λ0<2>
        • Notes:参考:math@多项式@求和式乘法
  • 另一方面,设 λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,⋯,λn是 f ( λ ) f(\lambda) f(λ)的 n n n个特征值(根)

    • 对于 n n n次多项式 f ( λ ) f(\lambda) f(λ),他有 n n n个复根,由余式定理,可以因式分解写成如下形式

      • f ( λ ) = ( λ − λ 1 ) ( λ − λ 2 ) ⋯ ( λ − λ n ) f(\lambda)=(\lambda-\lambda_1)(\lambda-\lambda_2)\cdots(\lambda-\lambda_n) f(λ)=(λ−λ1)(λ−λ2)⋯(λ−λn)

      • f ( λ ) f(\lambda) f(λ)= ∏ i = 1 n ( λ − λ i ) \prod_{i=1}^{n}(\lambda-\lambda_i) ∏i=1n(λ−λi)= λ n − ( ∑ i = 1 n λ i ) λ n − 1 + ⋯ + ∏ i = 1 n ( − λ i ) \lambda^n-(\sum_{i=1}^{n}\lambda_i)\lambda^{n-1}+\cdots+\prod_{i=1}^{n}(-\lambda_i) λn−(∑i=1nλi)λn−1+⋯+∏i=1n(−λi)<3>

小结

  • 对比式<2>,<3>中的
    • n − 1 n-1 n−1次项的系数 ∑ i = 1 n a i i = ∑ i = 1 n λ i \sum_{i=1}^{n}a_{ii}=\sum_{i=1}^{n}\lambda_{i} ∑i=1naii=∑i=1nλi
    • 0 0 0次项系数 ∣ − A ∣ = ∏ i = 1 n ( − λ i ) |-A|=\prod_{i=1}^{n}(-\lambda_i) ∣−A∣=∏i=1n(−λi),即 ( − 1 ) n ∣ A ∣ = ( − 1 ) n ∏ i n ( λ i ) (-1)^n|A|=(-1)^n\prod_{i}^{n}(\lambda_i) (−1)n∣A∣=(−1)n∏in(λi)所以: ∣ A ∣ = ∏ i n λ i |A|=\prod_{i}^{n}\lambda_i ∣A∣=∏inλi

导出性质

  • 设 α , A , λ \alpha,\bold{A},\lambda α,A,λ满足 A α = λ α \bold{A}\alpha=\lambda{\alpha} Aα=λα,则:

    • ( k A ) ( k α ) = ( k λ ) ( k α ) (k\bold{A})(k\alpha)=(k\lambda){(k\alpha)} (kA)(kα)=(kλ)(kα)
    • A m α = λ m α \bold{A}^m\alpha=\lambda^m\alpha Amα=λmα
  • 证明:

    • 对 A α = λ α \bold{A}\alpha=\lambda{\alpha} Aα=λα同乘以 k k k,

      • ( k A ) α = ( k λ ) α (k\bold{A})\alpha=(k\lambda)\alpha (kA)α=(kλ)α,
      • A ( k α ) = λ ( k α ) \bold{A}(k\alpha)=\lambda({k\alpha}) A(kα)=λ(kα)
      • 再次乘以 k k k: ( k A ) ( k α ) = ( k λ ) ( k α ) (k\bold{A})(k\alpha)=(k\lambda){(k\alpha)} (kA)(kα)=(kλ)(kα)
    • 对 A α = λ α \bold{A}\alpha=\lambda\alpha Aα=λα两边同时左乘 A \bold{A} A

      • A A α = A λ α = λ A α = λ λ α \bold{A}\bold{A}\alpha=\bold{A}\lambda\alpha=\lambda{\bold{A}\alpha}=\lambda{\lambda{\alpha}} AAα=Aλα=λAα=λλα,所以:
        • A 2 α = λ 2 α \bold{A}^2\alpha=\lambda^2\alpha A2α=λ2α;
        • 类似的 A 3 α = A λ 2 α , λ 2 A α = λ 3 α \bold{A}^3\alpha=\bold{A}\lambda^2\alpha,\lambda^2\bold{A}\alpha=\lambda^3\alpha A3α=Aλ2α,λ2Aα=λ3α
        • 重复 m − 1 m-1 m−1次得到: A m α = λ m α \bold{A}^m\alpha=\lambda^m\alpha Amα=λmα

可逆矩阵的特征值性质

  • 当 A \bold{A} A可逆时
    1. λ − 1 α = A − 1 α \lambda^{-1}\alpha=\bold{A}^{-1}\alpha λ−1α=A−1α
      • 对 A α = λ α \bold{A}\alpha=\lambda{\alpha} Aα=λα同时左乘 A − 1 \bold{A}^{-1} A−1
      • α = λ A − 1 α \alpha=\lambda \bold{A}^{-1}\alpha α=λA−1α,两边同乘以 λ − 1 \lambda^{-1} λ−1, λ − 1 α = A − 1 α \lambda^{-1}\alpha=\bold{A}^{-1}\alpha λ−1α=A−1α
    2. ( A ∗ ) α = ∣ A ∣ λ α (\bold{A}^*)\alpha=\frac{|\bold{A}|}{\lambda}\alpha (A∗)α=λ∣A∣α
      • 方法1:
        • A − 1 = 1 ∣ A ∣ A ∗ \bold{A}^{-1}=\frac{1}{|\bold{A}|}\bold{A}^* A−1=∣A∣1A∗,两边同时乘以 α \alpha α: A − 1 α = 1 ∣ A ∣ A ∗ α \bold{A}^{-1}\alpha=\frac{1}{|\bold{A}|}\bold{A}^{*}\alpha A−1α=∣A∣1A∗α
        • λ − 1 α = ( 1 ∣ A ∣ A ∗ ) α \lambda^{-1}\alpha=(\frac{1}{|\bold{A}|}\bold{A}^*)\alpha λ−1α=(∣A∣1A∗)α
        • ∣ A ∣ λ α = ( A ∗ ) α \frac{|\bold{A}|}{\lambda}\alpha=(\bold{A}^*)\alpha λ∣A∣α=(A∗)α
        • 所以 ( A ∗ ) α = ∣ A ∣ λ α (\bold{A}^*)\alpha=\frac{|\bold{A}|}{\lambda}\alpha (A∗)α=λ∣A∣α
      • 方法2:
        • A ∗ = ∣ A ∣ A − 1 \bold{A^{*}=|A|A^{-1}} A∗=∣A∣A−1,两边同时乘以 α \alpha α, ( A ∗ ) α = ∣ A ∣ A − 1 α \bold{(A^{*})\alpha=|A|A^{-1}\alpha} (A∗)α=∣A∣A−1α
        • ∣ A ∣ A − 1 α = ∣ A ∣ λ − 1 α \bold{|A|A^{-1}\alpha=|A|\lambda^{-1}\alpha} ∣A∣A−1α=∣A∣λ−1α
        • 所以 ( A ∗ ) α = ∣ A ∣ λ α (\bold{A}^*)\alpha=\frac{|\bold{A}|}{\lambda}\alpha (A∗)α=λ∣A∣α

转置矩阵和特征值

  • 方阵 A \bold{A} A的转置 A T \bold{A}^T AT的特征值和 A \bold{A} A的特征值相同

    • A : f ( λ ) = ∣ λ E − A ∣ \bold{A}:f(\lambda)=|\lambda{E}-\bold{A}| A:f(λ)=∣λE−A∣

    • A T : f ( λ ) = ∣ λ E − A T ∣ = ∣ ( λ E ) T − A T ∣ = ∣ ( λ E − A ) T ∣ = ∣ λ E − A ∣ \bold{A}^T:f(\lambda)=|\lambda{E}-\bold{A}^T|=|(\lambda{E})^T-\bold{A}^T|=|(\lambda{E}-\bold{A})^T|=|\lambda{E}-\bold{A}| AT:f(λ)=∣λE−AT∣=∣(λE)T−AT∣=∣(λE−A)T∣=∣λE−A∣

    • 可见, A , A T \bold{A},\bold{A}^T A,AT具有相同的特征方程,因此特征值一定相同

  • 但是它们的特征向量不一定相同

    • 因为前面我们讨论过,特征值不能够唯一确定特征向量

矩阵多项式的特征值

  • 设 p ( x ) = ∑ i = 0 m a i x i = ∑ i = 0 m a m − i x m − i p(x)=\sum\limits_{i=0}^{m}a_{i}x^i=\sum\limits_{i=0}^{m}a_{m-i}x^{m-i} p(x)=i=0∑maixi=i=0∑mam−ixm−i; λ , A , α \lambda,\bold{A},\alpha λ,A,α满足 A α = λ α \bold{A}\alpha=\lambda\alpha Aα=λα,则 p ( A ) α = p ( λ ) α p(\bold{A})\alpha=p(\lambda)\alpha p(A)α=p(λ)α

  • 证明:

    • p ( A ) α = ∑ i = 0 m a i A i α p(\bold{A})\alpha=\sum\limits_{i=0}^{m}a_{i}\bold{A}^i\alpha p(A)α=i=0∑maiAiα= ∑ i = 0 m a i λ i α \sum\limits_{i=0}^{m}a_{i}\lambda^i\alpha i=0∑maiλiα,而 p ( λ ) = ∑ i = 0 m a i λ i p(\lambda)=\sum\limits_{i=0}^{m}a_{i}\lambda^i p(λ)=i=0∑maiλi;从而 p ( λ ) α = ∑ i = 0 m a i λ i α p(\lambda)\alpha=\sum\limits_{i=0}^{m}a_{i}\lambda^i\alpha p(λ)α=i=0∑maiλiα

    • 因此 p ( A ) α = p ( λ ) α p(\bold{A})\alpha=p(\lambda)\alpha p(A)α=p(λ)α

不同特征值的特征向量线性无关定理

  • 设 n n n阶方阵 A \bold{A} A的 n n n个不同 特征值为 λ i , i = 1 , 2 , ⋯   , m \lambda_i,i=1,2,\cdots,m λi,i=1,2,⋯,m,( λ i ≠ λ j   \lambda_i\neq{\lambda_{j}}\, λi=λjif i ≠ j i\neq{j} i=j); A \bold{A} A关于 λ i \lambda_i λi对应的特征向量分别记为 α i , i = 1 , 2 , ⋯   , m \alpha_i,i=1,2,\cdots,m αi,i=1,2,⋯,m;那么 A 0 : α 1 , ⋯   , α m A_0:\alpha_1,\cdots,\alpha_m A0:α1,⋯,αm线性无关
  • 即:++方阵的属于不同特征值的特征向量线性无关++
  • 证明:
    • 对特征值的个数 m m m作数学归纳法

    • 当 m = 1 m=1 m=1时, α 1 ≠ 0 \bold{\alpha_1\neq{0}} α1=0, A 0 : α 1 A_0:\alpha_1 A0:α1仅含有一个非零向量的向量组线性无关

    • 设 m = k − 1 m=k-1 m=k−1时结论成立,即 A k − 1 : α 1 , ⋯   , α k − 1 A_{k-1}:\alpha_1,\cdots,\alpha_{k-1} Ak−1:α1,⋯,αk−1线性无关

      • 这里的思路是假设 m = k − 1 m=k-1 m=k−1时结论能推出 m = k m=k m=k时也成立

        • (当然也可以设 m = k m=k m=k时成立然后推 m = k + 1 m=k+1 m=k+1时仍然成立)
      • 设向量组 A k : α 1 , ⋯   , α k A_{k}:\alpha_1,\cdots,\alpha_k Ak:α1,⋯,αk,其线性相关性判定式 ∑ i = 1 k x i α i = 0 \sum_{i=1}^{k}x_i\alpha_i=\bold{0} ∑i=1kxiαi=0(1)

      • 用 A \bold{A} A左乘(1)式两边,得 ∑ i = 1 k x i A α i = 0 \sum_{i=1}^{k}x_i\bold{A}\alpha_i=\bold{0} ∑i=1kxiAαi=0(2)

      • 由 A α i = λ α i \bold{A}\alpha_i=\lambda{\alpha_i} Aαi=λαi代入(2)得 ∑ i = 1 k x i λ i α i = 0 \sum_{i=1}^{k}x_i\lambda_i\alpha_i=\bold{0} ∑i=1kxiλiαi=0(3)

      • 作 ( 3 ) − λ k ( 2 ) (3)-\lambda_k(2) (3)−λk(2)得: ∑ i = 1 k x i ( λ i − λ k ) α i = 0 \sum_{i=1}^{k}x_i(\lambda_i-\lambda_k)\alpha_i=\bold{0} ∑i=1kxi(λi−λk)αi=0,等式左侧展开式得最后一项为0,化简后即 ∑ i = 1 k − 1 x i ( λ i − λ k ) α i = 0 \sum_{i=1}^{k-1}x_i(\lambda_i-\lambda_k)\alpha_i=\bold{0} ∑i=1k−1xi(λi−λk)αi=0(4)

      • 由归纳假设,(4)中的表出系数 γ i = x i ( λ i − λ k ) = 0 \gamma_i=x_i(\lambda_i-\lambda_k)=0 γi=xi(λi−λk)=0, i = 1 , ⋯   , k − 1 i=1,\cdots,k-1 i=1,⋯,k−1

        • 由条件中的特征值互异性: λ i ≠ λ j \lambda_i\neq{\lambda_j} λi=λj, i = 1 , ⋯   , m i=1,\cdots,m i=1,⋯,m可知 λ i − λ k ≠ 0 \lambda_i-\lambda_k\neq{0} λi−λk=0, i = 1 , ⋯   , k − 1 i=1,\cdots,k-1 i=1,⋯,k−1
        • 从而 γ i = 0 \gamma_i=0 γi=0一定有 x i = 0 x_i=0 xi=0, i = 1 , ⋯   , k − 1 i=1,\cdots,k-1 i=1,⋯,k−1;代入(1)可知 x k α k = 0 x_k\alpha_k=\bold{0} xkαk=0,而 α k ≠ 0 \alpha_k\neq{\bold{0}} αk=0,所以 x k = 0 x_k=0 xk=0
        • 从而(1)中表出系数 x i = 0 , i = 1 , ⋯   , k x_i=0,i=1,\cdots,k xi=0,i=1,⋯,k,即 A k : α 1 , ⋯   , α k A_k:\alpha_1,\cdots,\alpha_k Ak:α1,⋯,αk线性无关
    • 由归纳法原理,命题成立

    • Note:这个归纳法证明中,最重要的一个步骤是等式(4)的构造过程,它将 m = k m=k m=k时的命题和 m = k − 1 m=k-1 m=k−1时的命题(归纳假设条件)联系起来

推论

  • 设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是方阵 A \bold{A} A的两个不同特征值 ( λ 1 ≠ λ 2 ) (\lambda_1\neq{\lambda_2}) (λ1=λ2),且 S 1 : ξ 1 , ⋯   , ξ s S_1:\xi_1,\cdots,\xi_s S1:ξ1,⋯,ξs和 S 2 : η 1 , ⋯   , η t S_2:\eta_1,\cdots,\eta_t S2:η1,⋯,ηt分别是对应于 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2的线性无关特征向量组,则 S 1 , S 2 S_1,S_2 S1,S2合并的向量组 S 3 S_3 S3线性无关

推广

  • 记特征值 λ i \lambda_i λi, i = 1 , ⋯   , m i=1,\cdots,m i=1,⋯,m的线性无关 特征向量组为 A i : α i 1 , α i 2 , ⋯   , α i s i A_i:\alpha_{i1},\alpha_{i2},\cdots,\alpha_{is_i} Ai:αi1,αi2,⋯,αisi😭 A i A_i Ai相当于方程 ( λ i E − A ) x = 0 (\lambda_iE-\bold{A})x=0 (λiE−A)x=0的一个基础解系),则这些向量组的合并向量组 B : A 1 , ⋯   , A n B:A_1,\cdots,A_n B:A1,⋯,An依然线性无关

  • 也即是说,属于各个特征值的线性无关特征向量 合在一起构成的向量组依然线性无关

  • 证明:

    • 对特征值个数 m m m作数学归纳法,过程和本节定理得证明过程类似

    • 当 m = 1 m=1 m=1时,结论显然成立 S 3 = S 1 S_3=S_1 S3=S1是线性无关的

    • 设 m = k m=k m=k时结论成立,

      • 当 m = k + 1 m=k+1 m=k+1时,设 ∑ i = 1 k + 1 ∑ j = 1 s i x i j α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijαij=0<1>

        • <1>两边同时左乘 A \bold{A} A: ∑ i = 1 k + 1 ∑ j = 1 s i x i j A α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\bold{A}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijAαij=0<2>

        • 将 A λ i = λ i α i j \bold{A}\lambda_i=\lambda_i\alpha_{ij} Aλi=λiαij, i = 1 , ⋯   , s i i=1,\cdots,s_i i=1,⋯,si,代入<2>得: ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ i α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{i}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijλiαij=0<3>

          • 展开<3.1>
            ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ i α i j = ∑ i = 1 k ∑ j = 1 s i x i j λ i α i j + ∑ j = 1 s k + 1 x k + 1 , j λ k + 1 α k + 1 , j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{i}\alpha_{ij} =\sum_{i=1}^{k}\sum_{j=1}^{s_i}x_{ij}\lambda_{i}\alpha_{ij} +\sum_{j=1}^{s_{k+1}}x_{k+1,j}\lambda_{k+1}\alpha_{k+1,j} =\bold{0} i=1∑k+1j=1∑sixijλiαij=i=1∑kj=1∑sixijλiαij+j=1∑sk+1xk+1,jλk+1αk+1,j=0
        • <1>两边同时乘以 λ k + 1 \lambda_{k+1} λk+1得: ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ k + 1 α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij}=\bold{0} ∑i=1k+1∑j=1sixijλk+1αij=0<4>

          • 展开<4.1>

          • ∑ i = 1 k + 1 ∑ j = 1 s i x i j λ k + 1 α i j = ∑ i = 1 k ∑ j = 1 s i x i j λ k + 1 α i j + ∑ j = 1 s k + 1 x k + 1 , j λ k + 1 α k + 1 , j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij} =\sum_{i=1}^{k}\sum_{j=1}^{s_i}x_{ij}\lambda_{k+1}\alpha_{ij} +\sum_{j=1}^{s_{k+1}}x_{k+1,j}\lambda_{k+1}\alpha_{k+1,j} =\bold{0} i=1∑k+1j=1∑sixijλk+1αij=i=1∑kj=1∑sixijλk+1αij+j=1∑sk+1xk+1,jλk+1αk+1,j=0

        • <3>-<4>,即<3.1>-<4.1>

          • ∑ i = 1 k + 1 ∑ j = 1 s i x i j ( λ i − λ k + 1 ) α i j = ∑ i = 1 k ∑ j = 1 s i x i j ( λ i − λ k + 1 ) α i j = 0 \sum_{i=1}^{k+1}\sum_{j=1}^{s_i}x_{ij} (\lambda_i-\lambda_{k+1})\alpha_{ij} =\sum_{i=1}^{k}\sum_{j=1}^{s_i}x_{ij} (\lambda_i-\lambda_{k+1})\alpha_{ij} =\bold{0} i=1∑k+1j=1∑sixij(λi−λk+1)αij=i=1∑kj=1∑sixij(λi−λk+1)αij=0
        • <3>左边展开式中 i = k + 1 i=k+1 i=k+1的被化简

      • 由归纳假设, ∑ i = 1 k ∑ j = 1 s i γ i j α i j = 0 \sum_{i=1}^{k}\sum_{j=1}^{s_i} \gamma_{ij}\alpha_{ij} =\bold{0} ∑i=1k∑j=1siγijαij=0其中 γ i j = 0 \gamma_{ij}=0 γij=0,所以, γ i j = x i j ( λ i − λ k + 1 ) = 0 \gamma_{ij}=x_{ij}(\lambda_i-\lambda_{k+1})=0 γij=xij(λi−λk+1)=0, i = 1 , ⋯   , k i=1,\cdots,k i=1,⋯,k, j = 1 , ⋯   , s i j=1,\cdots,s_{i} j=1,⋯,si

      • 由 λ i , i = 1 , ⋯   , m \lambda_i,i=1,\cdots,m λi,i=1,⋯,m的互异性可知, λ i − λ k + 1 ≠ 0 \lambda_i-\lambda_{k+1}\neq{0} λi−λk+1=0,所以 x i j = 0 x_{ij}=0 xij=0

      • 代入<1>得 ∑ j = 1 s k + 1 x k + 1 , j α k + 1 , j = 0 \sum_{j=1}^{s_{k+1}}x_{k+1,j}\alpha_{k+1,j}=\bold{0} ∑j=1sk+1xk+1,jαk+1,j=0

        • 由 A k + 1 : α k + 1 , 1 , ⋯   , α k + 1 , s k + 1 A_{k+1}:\alpha_{k+1,1},\cdots,\alpha_{k+1,s_{k+1}} Ak+1:αk+1,1,⋯,αk+1,sk+1线性无关可知, x k + 1 , j = 0 x_{k+1,j}=0 xk+1,j=0, j = 1 , ⋯   , s k + 1 j=1,\cdots,s_{k+1} j=1,⋯,sk+1
        • 所以 x 1 , 1 , ⋯   , x k + 1 , s k + 1 x_{1,1},\cdots,x_{k+1,s_{k+1}} x1,1,⋯,xk+1,sk+1全为0,即 B : A 1 , ⋯   , A k + 1 B:A_1,\cdots,A_{k+1} B:A1,⋯,Ak+1线性无关
    • 由归纳法原理,结论成立

特征向量线性组合

同一矩阵的同一特征值的特征向量线性组合仍然是矩阵的特征向量

  • 设 α \alpha α是矩阵 A \bold A A属于特征值 λ 0 \lambda_0 λ0的特征向量(用符号语言可以简介的表示为:

    • α , A → λ \alpha,{A}\to{\lambda} α,A→λ
    • 或者更直接的 A α = λ 0 α A\alpha=\lambda_0\alpha Aα=λ0α
  • 设 α 1 , α 2 , A , λ 0 \alpha_1,\alpha_2,\bold A,\lambda_0 α1,α2,A,λ0满足 A α 1 = λ 0 α 1 \bold{A\alpha_1=\lambda_{0}\alpha_1} Aα1=λ0α1; A α 2 = λ 0 α 2 \bold{A\alpha_2=\lambda_0\alpha_2} Aα2=λ0α2,则:

    • β = k α 1 \beta=k\alpha_1 β=kα1满足 A β = λ 0 β A\beta=\lambda_0\beta Aβ=λ0β
      • 因为 A ( k α 1 ) = k A α 1 \bold{A}(k\alpha_1)=k\bold{A}\alpha_1 A(kα1)=kAα1= k λ 0 α 1 = λ 0 ( k α 1 ) k\lambda_0{\alpha_1}=\lambda_{0}(k\alpha_1) kλ0α1=λ0(kα1)
    • γ = α 1 + α 2 \gamma=\alpha_1+\alpha_2 γ=α1+α2满足 A γ = λ 0 γ A\gamma=\lambda_0\gamma Aγ=λ0γ
      • A ( α 1 + α 2 ) \bold{A(\alpha_1+\alpha_2)} A(α1+α2)= A α 1 + A α 2 \bold{A\alpha_1+A\alpha_2} Aα1+Aα2= λ 0 α 1 + λ 0 α 2 = λ 0 ( α 1 + α 2 ) \lambda_0\alpha_1+\lambda_0\alpha_2=\lambda_0(\alpha_1+\alpha_2) λ0α1+λ0α2=λ0(α1+α2)
    • 综合上述结论,可以得出:若 α i \alpha_i αi, A , λ 0 \bold{A},\lambda_0 A,λ0满足 A α i = α i λ 0 A\alpha_i=\alpha_i\lambda_0 Aαi=αiλ0, ( i = 1 , 2 , ⋯   , n ) (i=1,2,\cdots,n) (i=1,2,⋯,n)则 α i \alpha_i αi的任意线性组合 θ = ∑ i k i α i \theta=\sum_i{k_i\alpha_i} θ=∑ikiαi满足 A θ = θ λ 0 A\theta=\theta\lambda_0 Aθ=θλ0

方阵 A \bold{A} A得不同特征值得特征向量之和不是 A \bold{A} A的特征向量

  • 使用反证法来证明

    • 设 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是 A \bold{A} A的两个不同特征值,即 A p i = λ i p i \bold{A}\bold{p}i=\lambda{i}\bold{p}_i Api=λipi, i = 1 , 2 i=1,2 i=1,2

    • 易知 A ( p 1 + p 2 ) = λ 1 p 1 + λ 2 p 2 \bold{A(p_1+p_2)}=\lambda_1{\bold{p}_1}+\lambda_2{\bold{p_2}} A(p1+p2)=λ1p1+λ2p2

    • 设 p 3 = p 1 + p 2 \bold{p_3=p_1+p_2} p3=p1+p2是 A \bold{A} A的特征向量,则应存在 λ \lambda λ使得 A p 3 = λ p 3 \bold{Ap_3=\lambda{p_3}} Ap3=λp3,即 λ 1 p 1 + λ 2 p 2 = λ p 3 \lambda_1{\bold{p}_1}+\lambda_2{\bold{p_2}}=\lambda{\bold{p_3}} λ1p1+λ2p2=λp3

    • 即 ( λ 1 − λ ) p 1 + ( λ 2 − λ ) p 2 = 0 (\lambda_1-\lambda)\bold{p}_1+(\lambda_2-\lambda)\bold{p_2}=\bold{0} (λ1−λ)p1+(λ2−λ)p2=0

    • 由于 p 1 , p 2 \bold{p_1,p_2} p1,p2线性无关,所以 λ i − λ = 0 , i = 1 , 2 \lambda_i-\lambda=0,i=1,2 λi−λ=0,i=1,2,所以 λ 1 = λ 2 = λ \lambda_1=\lambda_2=\lambda λ1=λ2=λ,这与 λ 1 ≠ λ 2 \lambda_1\neq{\lambda_2} λ1=λ2矛盾,所以不存在这样的 λ \lambda λ

    • 所以 p 1 + p 2 \bold{p_1+p_2} p1+p2不是 A \bold{A} A的特征向量

特征值的重数性质

  • 设方阵 A \bold{A} A的特征值 λ 1 , ⋯   , λ m \lambda_{1},\cdots,\lambda_{m} λ1,⋯,λm对,若 λ i \lambda_i λi是一个 k i k_i ki重特征值,那么对应于 λ i \lambda_i λi线性无关特征向量 的个数 u i ⩽ k i u_i\leqslant{k_i} ui⩽ki

    • 其中 ∑ k i = n \sum{k_i}=n ∑ki=n
  • 推论:记 u ( A ) = ∑ u i u(\bold{A})=\sum{u_i} u(A)=∑ui,一个 n n n阶方阵 A \bold{A} A的线性无关特征向量的个数 u ( A ) ⩽ n u(\bold{A})\leqslant{n} u(A)⩽n

相关推荐
阿隆ALong3 分钟前
云手机与Temu矩阵:跨境电商运营新引擎
线性代数·智能手机·矩阵
云云32116 小时前
亚矩阵云手机
线性代数·智能手机·矩阵
云云3212 天前
云手机能用来干什么?云手机在跨境电商领域的用途
服务器·线性代数·安全·智能手机·矩阵
云云3212 天前
云手机方案总结
服务器·线性代数·安全·智能手机·矩阵
AI小白白猫2 天前
20241230 基础数学-线性代数-(1)求解特征值(numpy, scipy)
线性代数·numpy·scipy
大山同学3 天前
第三章线性判别函数(二)
线性代数·算法·机器学习
云云3213 天前
搭建云手机平台的技术要求?
服务器·线性代数·安全·智能手机·矩阵
云云3213 天前
云手机有哪些用途?云手机选择推荐
服务器·线性代数·安全·智能手机·矩阵
十年一梦实验室3 天前
【C++】sophus : sim_details.hpp 实现了矩阵函数 W、其导数,以及其逆 (十七)
开发语言·c++·线性代数·矩阵
阿正的梦工坊3 天前
范德蒙矩阵(Vandermonde 矩阵)简介:意义、用途及编程应用
线性代数·矩阵