MySQL数据库索引的数据结构

数据库索引的功能就是让查找更加的高效,所以索引的数据结构应该是能够加速查找的数据结构。

MySQL的innoDB存储引擎的索引的数据结构就是多叉搜索树中的b+树,这可以说是为索引量身定做的一个数据结构。

首先,索引可以通过主键,unique修饰,也可以直接使用sql语句创建。当用主键给修饰id列,创建出索引,b+树是如何存储每个节点并提高查找效率的呢?

b+树相比普通多叉搜索树的特点:

(1)b+树是棵平衡树,树的深度都是差不多的,查找的次数不会相差很大。

(2)b+树的叶子节点包含了整个树所有的数据。

就这两个特点,让b+树成为了和索引完美适配的搜索树。

(1)因为b+树的叶子节点中包含了所有的数据,所以只需要在叶子节点中存储一条完整的数据,非叶子节点只存储用来做索引的那一列的值,大大减小的存储空间。

(2)因为数据库都是在磁盘上存储的,每次比较都要从磁盘上读取数据,b+树是多叉树,每次io读取一个节点可以获取多个数据来比较,减少了io次数,加快了比较效率。

(3)因为只有叶子节点才有完整数据,所以每次查询都会查到叶子节点,并且b+树是平衡树,所以深度都差不多,所以不管查询什么数据,最后的io次数都是差不多的,保证了查询的稳定。

当一个表中除了主键之外,还有其他的索引的时候,其他的索引的叶子结点就不是存储的整条数据了,而是存储的主键索引的叶子节点的位置。

所以其他索引查找时最终都会回到主键索引去获得整条数据。这也进一步节省了索引的空间消耗。这个操作叫做回表。

相关推荐
C雨后彩虹3 小时前
任务最优调度
java·数据结构·算法·华为·面试
heartbeat..3 小时前
Spring AOP 全面详解(通俗易懂 + 核心知识点 + 完整案例)
java·数据库·spring·aop
麦聪聊数据5 小时前
MySQL并发与锁:从“防止超卖”到排查“死锁”
数据库·sql·mysql
AC赳赳老秦6 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
一条大祥脚6 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
myzshare7 小时前
实战分享:我是如何用SSM框架开发出一个完整项目的
java·mysql·spring cloud·微信小程序
YMatrix 官方技术社区7 小时前
YMatrix 存储引擎解密:MARS3 存储引擎如何超越传统行存、列存实现“时序+分析“场景性能大幅提升?
开发语言·数据库·时序数据库·数据库架构·智慧工厂·存储引擎·ymatrix
辞砚技术录8 小时前
MySQL面试题——索引2nd
数据库·mysql·面试
linweidong8 小时前
C++thread pool(线程池)设计应关注哪些扩展性问题?
java·数据库·c++
cpp_25018 小时前
P2708 硬币翻转
数据结构·c++·算法·题解·洛谷