基于Vgg-Unet模型自动驾驶场景检测

1.VGG

VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,VGG的输入被设置为大小为224x244的RGB图像。为训练集图像上的所有图像计算平均RGB值,然后将该图像作为输入输入到VGG卷积网络。使用3x3或1x1滤波器,并且卷积步骤是固定的。有3个VGG全连接层,根据卷积层+全连接层的总数,可以从VGG11到VGG19变化。最小VGG11具有8个卷积层和3个完全连接层。最大VGG19具有16个卷积层+3个完全连接的层。此外,VGG网络后面没有每个卷积层后面的池化层,也没有分布在不同卷积层下的总共5个池化层。

结构图如下:

架构图

2.Unet模型:

Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。与CNN不同的之处在于CNN是图像级的分类,而unet是像素级的分类,其输出的是每个像素点的类别

主要代码如下:

复制代码
def get_vgg_encoder(input_height=224,  input_width=224, channels=3):

    if channel == 'channels_first':
        img_input = Input(shape=(channels, input_height, input_width))
    elif channel == 'channels_last':
        img_input = Input(shape=(input_height, input_width, channels))

    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv1', data_format=channel)(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool',
                     data_format=channel)(x)
    f1 = x
    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv1', data_format=channel)(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool',
                     data_format=channel)(x)
    f2 = x

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv1', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv2', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool',
                     data_format=channel)(x)
    f3 = x

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool',
                     data_format=channel)(x)
    f4 = x

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool',
                     data_format=channel)(x)
    f5 = x

    return img_input, [f1, f2, f3, f4, f5]

def _unet(classes, encoder, l1_skip_conn=True, input_height=416,
          input_width=608, channels=3):

    img_input, levels = encoder(
        input_height=input_height, input_width=input_width, channels=channels)
    [f1, f2, f3, f4, f5] = levels

    o = f4

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(512, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f3], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(256, (3, 3), padding='valid', activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f2], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)

    if l1_skip_conn:
        o = (concatenate([o, f1], axis=-1))

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(64, (3, 3), padding='valid', activation='relu', data_format=channel, name="seg_feats"))(o)
    o = (BatchNormalization())(o)

    o = Conv2D(classes, (3, 3), padding='same',
               data_format=channel)(o)

    model = get_segmentation_model(img_input, o)

    return model
相关推荐
飞哥数智坊16 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪17 小时前
AI建站推荐
大数据·人工智能·python
AI猫站长17 小时前
快讯|特斯拉机器人街头“打工”卖爆米花;灵心巧手香港AI艺术节秀“艺能”,香港艺发局主席霍启刚积极评价;国产核心部件价格将“腰斩”
人工智能·机器人·具身智能·neurips·灵心巧手·脑电波·linkerhand
Godspeed Zhao17 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
哥布林学者17 小时前
吴恩达深度学习课程四:计算机视觉 第三周:检测算法 (三)交并比、非极大值抑制和锚框
深度学习·ai
昨日之日200617 小时前
SCAIL - 自然流畅的AI角色动画生成软件 照片跳舞 虚拟偶像 WebUI+ComfyUI工作流 一键整合包下载
人工智能·音视频
geneculture17 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
我很哇塞耶17 小时前
OpenAI最新发布,企业级AI智能体的强化微调实践
人工智能·ai·大模型
岁月的眸18 小时前
【科大讯飞声纹识别和语音内容识别的实时接口实现】
人工智能·go·语音识别