基于Vgg-Unet模型自动驾驶场景检测

1.VGG

VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,VGG的输入被设置为大小为224x244的RGB图像。为训练集图像上的所有图像计算平均RGB值,然后将该图像作为输入输入到VGG卷积网络。使用3x3或1x1滤波器,并且卷积步骤是固定的。有3个VGG全连接层,根据卷积层+全连接层的总数,可以从VGG11到VGG19变化。最小VGG11具有8个卷积层和3个完全连接层。最大VGG19具有16个卷积层+3个完全连接的层。此外,VGG网络后面没有每个卷积层后面的池化层,也没有分布在不同卷积层下的总共5个池化层。

结构图如下:

架构图

2.Unet模型:

Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。与CNN不同的之处在于CNN是图像级的分类,而unet是像素级的分类,其输出的是每个像素点的类别

主要代码如下:

复制代码
def get_vgg_encoder(input_height=224,  input_width=224, channels=3):

    if channel == 'channels_first':
        img_input = Input(shape=(channels, input_height, input_width))
    elif channel == 'channels_last':
        img_input = Input(shape=(input_height, input_width, channels))

    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv1', data_format=channel)(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool',
                     data_format=channel)(x)
    f1 = x
    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv1', data_format=channel)(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool',
                     data_format=channel)(x)
    f2 = x

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv1', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv2', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool',
                     data_format=channel)(x)
    f3 = x

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool',
                     data_format=channel)(x)
    f4 = x

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool',
                     data_format=channel)(x)
    f5 = x

    return img_input, [f1, f2, f3, f4, f5]

def _unet(classes, encoder, l1_skip_conn=True, input_height=416,
          input_width=608, channels=3):

    img_input, levels = encoder(
        input_height=input_height, input_width=input_width, channels=channels)
    [f1, f2, f3, f4, f5] = levels

    o = f4

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(512, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f3], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(256, (3, 3), padding='valid', activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f2], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)

    if l1_skip_conn:
        o = (concatenate([o, f1], axis=-1))

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(64, (3, 3), padding='valid', activation='relu', data_format=channel, name="seg_feats"))(o)
    o = (BatchNormalization())(o)

    o = Conv2D(classes, (3, 3), padding='same',
               data_format=channel)(o)

    model = get_segmentation_model(img_input, o)

    return model
相关推荐
Blossom.1181 分钟前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
无声旅者33 分钟前
AI 模型分类全解:特性与选择指南
人工智能·ai·ai大模型
Grassto1 小时前
Cursor Rules 使用
人工智能
MYH5161 小时前
深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
人工智能·深度学习
Lilith的AI学习日记1 小时前
什么是预训练?深入解读大模型AI的“高考集训”
开发语言·人工智能·深度学习·神经网络·机器学习·ai编程
聚客AI1 小时前
PyTorch玩转CNN:卷积操作可视化+五大经典网络复现+分类项目
人工智能·pytorch·神经网络
程序员岳焱2 小时前
深度剖析:Spring AI 与 LangChain4j,谁才是 Java 程序员的 AI 开发利器?
java·人工智能·后端
Q同学2 小时前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
柠檬味拥抱2 小时前
AI智能体在金融决策系统中的自主学习与行为建模方法探讨
人工智能
禺垣2 小时前
图神经网络(GNN)模型的基本原理
深度学习