基于Vgg-Unet模型自动驾驶场景检测

1.VGG

VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸识别、图像分类等方面,VGG的输入被设置为大小为224x244的RGB图像。为训练集图像上的所有图像计算平均RGB值,然后将该图像作为输入输入到VGG卷积网络。使用3x3或1x1滤波器,并且卷积步骤是固定的。有3个VGG全连接层,根据卷积层+全连接层的总数,可以从VGG11到VGG19变化。最小VGG11具有8个卷积层和3个完全连接层。最大VGG19具有16个卷积层+3个完全连接的层。此外,VGG网络后面没有每个卷积层后面的池化层,也没有分布在不同卷积层下的总共5个池化层。

结构图如下:

架构图

2.Unet模型:

Unet是一个优秀的语义分割模型,其主要执行过程与其它语义分割模型类似。与CNN不同的之处在于CNN是图像级的分类,而unet是像素级的分类,其输出的是每个像素点的类别

主要代码如下:

复制代码
def get_vgg_encoder(input_height=224,  input_width=224, channels=3):

    if channel == 'channels_first':
        img_input = Input(shape=(channels, input_height, input_width))
    elif channel == 'channels_last':
        img_input = Input(shape=(input_height, input_width, channels))

    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv1', data_format=channel)(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same',
               name='block1_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool',
                     data_format=channel)(x)
    f1 = x
    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv1', data_format=channel)(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same',
               name='block2_conv2', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool',
                     data_format=channel)(x)
    f2 = x

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv1', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv2', data_format=channel)(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same',
               name='block3_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool',
                     data_format=channel)(x)
    f3 = x

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block4_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool',
                     data_format=channel)(x)
    f4 = x

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv1', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv2', data_format=channel)(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same',
               name='block5_conv3', data_format=channel)(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool',
                     data_format=channel)(x)
    f5 = x

    return img_input, [f1, f2, f3, f4, f5]

def _unet(classes, encoder, l1_skip_conn=True, input_height=416,
          input_width=608, channels=3):

    img_input, levels = encoder(
        input_height=input_height, input_width=input_width, channels=channels)
    [f1, f2, f3, f4, f5] = levels

    o = f4

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(512, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f3], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(256, (3, 3), padding='valid', activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)
    o = (concatenate([o, f2], axis=-1))
    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=channel))(o)
    o = (BatchNormalization())(o)

    o = (UpSampling2D((2, 2), data_format=channel))(o)

    if l1_skip_conn:
        o = (concatenate([o, f1], axis=-1))

    o = (ZeroPadding2D((1, 1), data_format=channel))(o)
    o = (Conv2D(64, (3, 3), padding='valid', activation='relu', data_format=channel, name="seg_feats"))(o)
    o = (BatchNormalization())(o)

    o = Conv2D(classes, (3, 3), padding='same',
               data_format=channel)(o)

    model = get_segmentation_model(img_input, o)

    return model
相关推荐
AKAMAI10 分钟前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai29 分钟前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
zskj_zhyl1 小时前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋1 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF1 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
l1t3 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb
plusplus1683 小时前
边缘智能实战手册:攻克IoT应用三大挑战的AI战术
人工智能·物联网
地平线开发者3 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
果粒橙_LGC4 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
雷达学弱狗4 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习