一、题目大意
我们有n个点,p条边,最小化从1到n之间的路径的第k+1大的数(当路径不超过k时就是0)
二、解题思路
我们首先用dijkstra过一遍,判断从1能不能到n,不能直接输出-1结束。
1能到达n的话,就对二分第k+1大的边进行二分,left选-1,right选最大的边的长度+1(这里我left一开始选取的时最小边-1,后来发现当k比较大时结果可能是0)
二分的依据如下
cpp
设二分的值为mid
记录从1到n的路径中必走的大于mid的值的数量
如果超过了k,那么放大mid
如果小于等于k,那么缩小mid,同时记录
这样不断循环,直到找到一个临界值limit
当mid=limit时,大于mid的边小于等于k个
当mid=limit-1时,大于mid的边超过k个
那么limit一定就是第k+1大的边
输出最后一个(大于mid的边数小于等于k的)mid即可
三、代码
cpp
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> P;
vector<P> edges[1007];
bool used[1007];
int n, p, k, d[1007], inf = 0x3f3f3f3f, maxt = 0;
void input()
{
int from, to, cost;
scanf("%d%d%d", &n, &p, &k);
for (int i = 0; i < p; i++)
{
scanf("%d%d%d", &from, &to, &cost);
edges[from - 1].push_back(P(cost, to - 1));
edges[to - 1].push_back(P(cost, from - 1));
maxt = max(cost, maxt);
}
}
bool judgeByDijkstra(int mid)
{
for (int i = 0; i < n; i++)
{
d[i] = inf;
used[i] = false;
}
d[0] = 0;
priority_queue<P, vector<P>, greater<P>> que;
que.push(P(d[0], 0));
while (!que.empty())
{
P current = que.top();
que.pop();
if (used[current.second] || current.first > d[current.second])
{
continue;
}
used[current.second] = true;
for (int i = 0; i < edges[current.second].size(); i++)
{
P toEdge = edges[current.second][i];
int relativeEdge = toEdge.first > mid ? 1 : 0;
if (d[current.second] + relativeEdge < d[toEdge.second])
{
d[toEdge.second] = d[current.second] + relativeEdge;
que.push(P(d[toEdge.second], toEdge.second));
}
}
}
return d[n - 1] <= k;
}
void binarySearch()
{
int left = -1, right = maxt + 1;
while (left + 1 < right)
{
int mid = (left + right) / 2;
if (judgeByDijkstra(mid))
{
right = mid;
}
else
{
left = mid;
}
}
printf("%d\n", right);
}
bool judgeIfCanGet()
{
for (int i = 0; i < n; i++)
{
d[i] = inf;
used[i] = false;
}
d[0] = 0;
priority_queue<P, vector<P>, greater<P>> que;
que.push(P(d[0], 0));
while (!que.empty())
{
P current = que.top();
que.pop();
if (used[current.second] || current.first > d[current.second])
{
continue;
}
used[current.second] = true;
for (int i = 0; i < edges[current.second].size(); i++)
{
P toEdge = edges[current.second][i];
if (d[current.second] + toEdge.first < d[toEdge.second])
{
d[toEdge.second] = d[current.second] + toEdge.first;
que.push(P(d[toEdge.second], toEdge.second));
}
}
}
return d[n - 1] != inf;
}
int main()
{
input();
if (!judgeIfCanGet())
{
printf("-1\n");
}
else
{
binarySearch();
}
return 0;
}