Opencv 图像金字塔----高斯和拉普拉斯

原文:图像金字塔----高斯和拉普拉斯

图像金字塔是图像中多尺度表达的一种,最初用于机器视觉和图像压缩,最主要用于图像的分割、融合。

高斯金字塔 ( Gaussian pyramid):

高斯金字塔是由底部的最大分辨率图像逐次向下采样得到的一系列图像。最下面的图像分辨率最高,越往上图像分辨率越低。

高斯金字塔的向下采样过程是:

  1. 对于给定的图像先做一次高斯平滑处理,也就是使用一个大小为的卷积核对图像进行卷积操作.

OpenCv 中使用的高斯核

  1. 然后再对图像采样,去除图像中的偶数行和偶数列,然后就得到一张图片。

向下取样会逐渐丢失图像的信息。以上就是对图像的向下取样操作,即缩小图像。

拉普拉斯金字塔(Laplacian pyramid):

用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

也就是说,拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。保留的是残差!为图像还原做准备!

OpenCv中都给我们提供好了API:

cpp 复制代码
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
复制代码
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );

高斯金字塔与拉普拉斯金字塔的实测效果如下:

如上图所示:通过 高斯向上采样,与拉普拉斯金字塔结果,恢复效果有一定差距。

参考代码:

cpp 复制代码
#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace std;
using namespace cv;

vector<Mat> vecPyUp;//放大
vector<Mat> vecPyDown;//缩小
vector<Mat> vecLapImg; //差值  拉普拉斯金字塔(Laplacian pyramid)
string pyramidDown = "GaussianPyramidDown";
string pyramidDownRestore = "pyramidDownRestore";
string pyramidUp = "Gaussian pyramidUp";
string LaplacianPyramid = "LaplacianPyramid";

int MaxLevel=6;

void pyramidCreate(Mat imgOri)
    {
    
        vecPyUp.clear();
        vecPyDown.clear();
        vecLapImg.clear();

        // Down
        for (int i = 0; i < MaxLevel; i++)
        {
            vecPyDown.push_back(imgOri);
            pyrDown(imgOri, imgOri);
        }

        // Up
        Mat imgMin = vecPyDown[MaxLevel - 1].clone();
        vecPyUp.push_back(imgMin);
        for (int i = 0; i < MaxLevel-1; i++)
        {
            pyrUp(imgMin, imgMin, vecPyDown[MaxLevel - i - 2 ].size());
            vecPyUp.push_back(imgMin);
        }

        Mat temp;
        // Laplace
        for (int i = 0; i < MaxLevel; i++)
        {
            subtract(vecPyDown[MaxLevel-i-1], vecPyUp[i], temp);
           // temp = temp + Scalar(127, 127, 127);
            vecLapImg.push_back(temp);
        }
    }
    //回调函数
    void callBack(int level, void* )
    {
        if(level<0)level=0;
        imshow(pyramidUp, vecPyUp[level]);
        imshow(pyramidDown, vecPyDown[MaxLevel-level-1]);
        imshow(LaplacianPyramid, vecLapImg[level]);
        Mat restore;
        add(vecLapImg[level],vecPyUp[level],restore);
        imshow(pyramidDownRestore, restore);

    }


int main()
{
    //输入图片
    
    srcImage = imread("lady.jpg"); // 读取图像;
    if (srcImage.empty()) {
        printf("读取失败");
        return 0;
    }

    pyramidCreate(srcImage);

    namedWindow(pyramidDown, 0);
    namedWindow(pyramidUp, 0);
    namedWindow(LaplacianPyramid, 0);
    namedWindow(pyramidDownRestore, 0);
    createTrackbar("Level", pyramidDown, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", pyramidUp, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", LaplacianPyramid, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", ppyramidDownRestore, 0, pyramid::MaxLevel-1, callBack);
    callBack(0,0);
    waitKey(0);
    destroyAllWindows();
    return 0;
}
相关推荐
云卓SKYDROID15 分钟前
无人机避障与目标识别技术分析!
人工智能·无人机·科普·高科技·云卓科技·激光避障
chuangfumao22 分钟前
解读《人工智能指数报告 2025》:洞察 AI 发展新态势
人工智能·搜索引擎·百度
可爱の小公举34 分钟前
自然语言处理(NLP)领域大图
人工智能·自然语言处理
不是AI40 分钟前
【Java编程】【计算机视觉】一种简单的图片加/解密算法
java·算法·计算机视觉
一直走下去-明1 小时前
使用python帮助艺术家完成角色动画和服装模型等任务
开发语言·图像处理·pytorch·python·opencv·ai作画
qq_436962181 小时前
AI数据分析的优势分析
人工智能·数据挖掘·数据分析
Vodka~1 小时前
深度学习——数据处理脚本(基于detectron2框架)
人工智能·windows·深度学习
爱的叹息1 小时前
关于 传感器 的详细解析,涵盖定义、分类、工作原理、常见类型、应用领域、技术挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·机器人
恶霸不委屈1 小时前
突破精度极限!基于DeepSeek的无人机航拍图像智能校准系统技术解析
人工智能·python·无人机·deepseek