Opencv 图像金字塔----高斯和拉普拉斯

原文:图像金字塔----高斯和拉普拉斯

图像金字塔是图像中多尺度表达的一种,最初用于机器视觉和图像压缩,最主要用于图像的分割、融合。

高斯金字塔 ( Gaussian pyramid):

高斯金字塔是由底部的最大分辨率图像逐次向下采样得到的一系列图像。最下面的图像分辨率最高,越往上图像分辨率越低。

高斯金字塔的向下采样过程是:

  1. 对于给定的图像先做一次高斯平滑处理,也就是使用一个大小为的卷积核对图像进行卷积操作.

OpenCv 中使用的高斯核

  1. 然后再对图像采样,去除图像中的偶数行和偶数列,然后就得到一张图片。

向下取样会逐渐丢失图像的信息。以上就是对图像的向下取样操作,即缩小图像。

拉普拉斯金字塔(Laplacian pyramid):

用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

也就是说,拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。保留的是残差!为图像还原做准备!

OpenCv中都给我们提供好了API:

cpp 复制代码
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
复制代码
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );

高斯金字塔与拉普拉斯金字塔的实测效果如下:

如上图所示:通过 高斯向上采样,与拉普拉斯金字塔结果,恢复效果有一定差距。

参考代码:

cpp 复制代码
#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace std;
using namespace cv;

vector<Mat> vecPyUp;//放大
vector<Mat> vecPyDown;//缩小
vector<Mat> vecLapImg; //差值  拉普拉斯金字塔(Laplacian pyramid)
string pyramidDown = "GaussianPyramidDown";
string pyramidDownRestore = "pyramidDownRestore";
string pyramidUp = "Gaussian pyramidUp";
string LaplacianPyramid = "LaplacianPyramid";

int MaxLevel=6;

void pyramidCreate(Mat imgOri)
    {
    
        vecPyUp.clear();
        vecPyDown.clear();
        vecLapImg.clear();

        // Down
        for (int i = 0; i < MaxLevel; i++)
        {
            vecPyDown.push_back(imgOri);
            pyrDown(imgOri, imgOri);
        }

        // Up
        Mat imgMin = vecPyDown[MaxLevel - 1].clone();
        vecPyUp.push_back(imgMin);
        for (int i = 0; i < MaxLevel-1; i++)
        {
            pyrUp(imgMin, imgMin, vecPyDown[MaxLevel - i - 2 ].size());
            vecPyUp.push_back(imgMin);
        }

        Mat temp;
        // Laplace
        for (int i = 0; i < MaxLevel; i++)
        {
            subtract(vecPyDown[MaxLevel-i-1], vecPyUp[i], temp);
           // temp = temp + Scalar(127, 127, 127);
            vecLapImg.push_back(temp);
        }
    }
    //回调函数
    void callBack(int level, void* )
    {
        if(level<0)level=0;
        imshow(pyramidUp, vecPyUp[level]);
        imshow(pyramidDown, vecPyDown[MaxLevel-level-1]);
        imshow(LaplacianPyramid, vecLapImg[level]);
        Mat restore;
        add(vecLapImg[level],vecPyUp[level],restore);
        imshow(pyramidDownRestore, restore);

    }


int main()
{
    //输入图片
    
    srcImage = imread("lady.jpg"); // 读取图像;
    if (srcImage.empty()) {
        printf("读取失败");
        return 0;
    }

    pyramidCreate(srcImage);

    namedWindow(pyramidDown, 0);
    namedWindow(pyramidUp, 0);
    namedWindow(LaplacianPyramid, 0);
    namedWindow(pyramidDownRestore, 0);
    createTrackbar("Level", pyramidDown, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", pyramidUp, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", LaplacianPyramid, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", ppyramidDownRestore, 0, pyramid::MaxLevel-1, callBack);
    callBack(0,0);
    waitKey(0);
    destroyAllWindows();
    return 0;
}
相关推荐
海边夕阳200612 分钟前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
2501_9181269118 分钟前
如何用ai做开发
人工智能
f***a34628 分钟前
开源模型应用落地-工具使用篇-Spring AI-高阶用法(九)
人工智能·spring·开源
用户51914958484530 分钟前
BBDown:高效便捷的哔哩哔哩视频下载工具
人工智能·aigc
CV实验室32 分钟前
CV论文速递:覆盖视频生成与理解、3D视觉与运动迁移、多模态与跨模态智能、专用场景视觉技术等方向 (11.17-11.21)
人工智能·计算机视觉·3d·论文·音视频·视频生成
●VON34 分钟前
AI不能做什么?澄清常见误解
人工智能
数据堂官方账号41 分钟前
行业洞见 | AI鉴伪:数据驱动的数字安全变革
人工智能·安全
能鈺CMS42 分钟前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
Salt_07281 小时前
DAY 19 数组的常见操作和形状
人工智能·python·机器学习
技术探索家2 小时前
别再让Claude乱写代码了!一个配置文件让AI准确率提升10%
人工智能