Opencv 图像金字塔----高斯和拉普拉斯

原文:图像金字塔----高斯和拉普拉斯

图像金字塔是图像中多尺度表达的一种,最初用于机器视觉和图像压缩,最主要用于图像的分割、融合。

高斯金字塔 ( Gaussian pyramid):

高斯金字塔是由底部的最大分辨率图像逐次向下采样得到的一系列图像。最下面的图像分辨率最高,越往上图像分辨率越低。

高斯金字塔的向下采样过程是:

  1. 对于给定的图像先做一次高斯平滑处理,也就是使用一个大小为的卷积核对图像进行卷积操作.

OpenCv 中使用的高斯核

  1. 然后再对图像采样,去除图像中的偶数行和偶数列,然后就得到一张图片。

向下取样会逐渐丢失图像的信息。以上就是对图像的向下取样操作,即缩小图像。

拉普拉斯金字塔(Laplacian pyramid):

用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用。

也就是说,拉普拉斯金字塔是通过源图像减去先缩小后再放大的图像的一系列图像构成的。保留的是残差!为图像还原做准备!

OpenCv中都给我们提供好了API:

cpp 复制代码
CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
                           const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
复制代码
CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
                         const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );

高斯金字塔与拉普拉斯金字塔的实测效果如下:

如上图所示:通过 高斯向上采样,与拉普拉斯金字塔结果,恢复效果有一定差距。

参考代码:

cpp 复制代码
#include <string>
#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>

using namespace std;
using namespace cv;

vector<Mat> vecPyUp;//放大
vector<Mat> vecPyDown;//缩小
vector<Mat> vecLapImg; //差值  拉普拉斯金字塔(Laplacian pyramid)
string pyramidDown = "GaussianPyramidDown";
string pyramidDownRestore = "pyramidDownRestore";
string pyramidUp = "Gaussian pyramidUp";
string LaplacianPyramid = "LaplacianPyramid";

int MaxLevel=6;

void pyramidCreate(Mat imgOri)
    {
    
        vecPyUp.clear();
        vecPyDown.clear();
        vecLapImg.clear();

        // Down
        for (int i = 0; i < MaxLevel; i++)
        {
            vecPyDown.push_back(imgOri);
            pyrDown(imgOri, imgOri);
        }

        // Up
        Mat imgMin = vecPyDown[MaxLevel - 1].clone();
        vecPyUp.push_back(imgMin);
        for (int i = 0; i < MaxLevel-1; i++)
        {
            pyrUp(imgMin, imgMin, vecPyDown[MaxLevel - i - 2 ].size());
            vecPyUp.push_back(imgMin);
        }

        Mat temp;
        // Laplace
        for (int i = 0; i < MaxLevel; i++)
        {
            subtract(vecPyDown[MaxLevel-i-1], vecPyUp[i], temp);
           // temp = temp + Scalar(127, 127, 127);
            vecLapImg.push_back(temp);
        }
    }
    //回调函数
    void callBack(int level, void* )
    {
        if(level<0)level=0;
        imshow(pyramidUp, vecPyUp[level]);
        imshow(pyramidDown, vecPyDown[MaxLevel-level-1]);
        imshow(LaplacianPyramid, vecLapImg[level]);
        Mat restore;
        add(vecLapImg[level],vecPyUp[level],restore);
        imshow(pyramidDownRestore, restore);

    }


int main()
{
    //输入图片
    
    srcImage = imread("lady.jpg"); // 读取图像;
    if (srcImage.empty()) {
        printf("读取失败");
        return 0;
    }

    pyramidCreate(srcImage);

    namedWindow(pyramidDown, 0);
    namedWindow(pyramidUp, 0);
    namedWindow(LaplacianPyramid, 0);
    namedWindow(pyramidDownRestore, 0);
    createTrackbar("Level", pyramidDown, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", pyramidUp, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", LaplacianPyramid, 0, pyramid::MaxLevel-1, callBack);
    createTrackbar("Level", ppyramidDownRestore, 0, pyramid::MaxLevel-1, callBack);
    callBack(0,0);
    waitKey(0);
    destroyAllWindows();
    return 0;
}
相关推荐
MilesShi1 分钟前
AI Agent实战 - LangChain+Playwright构建火车票查询Agent
人工智能·python·机器学习
IT古董5 分钟前
【第一章:人工智能基础】04.数学建模基本方法-(1)优化问题与线性规划
人工智能·数学建模
yuluo_YX10 分钟前
Spring AI Alibaba Graph 实践
java·人工智能·spring
代码程序猿RIP13 分钟前
【Pytorch】(1)Pytorch环境安装-①创建虚拟环境
人工智能·pytorch·python
倔强青铜三38 分钟前
就离谱!Python相对路径竟暗藏杀机?90%开发者踩过的坑!
人工智能·python·面试
李元豪42 分钟前
我有免费的大模型能力,文本转语音,语音转文本,文本生成视频的能力。如何组合这些资源能力?生成一个有价值的可以挣钱的项目为社会做贡献?
人工智能
寻觅神话0643 分钟前
Coze扣子 - AI生成数字人口播视频
人工智能
牛奶还是纯的好1 小时前
目标检测标注格式
人工智能·目标检测·目标跟踪
摘取一颗天上星️1 小时前
端到端记忆网络 vs 神经图灵机:外部记忆的两种哲学之争
网络·人工智能·深度学习·机器学习·lstm·外部记忆
vlln1 小时前
【论文解读】rStar:用互洽方法增强 SLM(小型语言模型) 推理能力
人工智能·深度学习·语言模型·自然语言处理·transformer