数学建模--退火算法求解最值的Python实现

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

复制代码
"""
1.设定退火算法的基础参数
2.设定需要优化的函数,求解该函数的最小值/最大值
3.进行退火过程,随机产生退火解并且纠正,直到冷却
4.绘制可视化图片进行了解退火整体过程
"""

2.算法核心代码

复制代码
#利用退火算法求解函数的极值(优化问题)
import numpy as np
from random import random
import random
import math
import matplotlib.pyplot as plt
#设定退火算法的基础参数
x_min,x_max=(-3,3)#x的取值范围
alpha=0.99#降温系数为0.99
bg_temp=100#起始温度
ed_temp=0.01#最终温度(可设可不设)
cycle_number=500#循环次数
#设定需要优化的函数,求解该函数的最小值
"""
需要运用的化直接修改函数即可.
不过需要注意定义域的问题,主动修改一下定义域就行
"""
def opt_fun(x):
    y=11*np.sin(2*x)+7*np.cos(5*x)
    return y
#由于没有具体的数据,我们直接随机设置值就行随机产生初始值

#随机产生本次退火解
def new_result(x):
    x1=x+bg_temp*random.uniform(-1,1)
    #退火解的合理性检查并且纠正:
    if  x_min<=x1<=x_max:
        return x1
    elif x1<x_min:
        add_min=random.uniform(-1,1)
        return add_min*x_min+(1-add_min)*x
    else:
        add_max=random.uniform(-1,1)
        return add_max*x_max+(1-add_max)*x
def draw_picture(x):
    plt.cla()
    #绘图的时候这里可以进行修改
    #注意这里y的取值范围[-25,25]要大体预估一下
    plt.axis([x_min-1,x_max+1,-25,25])
    m=np.arange(x_min,x_max,0.0001)
    plt.plot(m,opt_fun(m),color='red')
    plt.plot(x,opt_fun(x),marker='*',color='b',markersize='8')
    plt.title('Current Temperature={}'.format(T))
    plt.pause(0.1)

#设定接受概率函数
def p(x,x1):
    return math.exp(-abs(opt_fun(x)-opt_fun(x1))/T)

#循环退火过程,直到冷却求出最优解
def Annealing_cycle():
    global T
    count_number=0
    T=bg_temp
    x=random.uniform(x_min,x_max)
    print("*******************************************************************************************************************")
    while T>ed_temp:
        draw_picture(x)
        for i in range(cycle_number):
            x1=new_result(x)
            #求解最小值的过程
            if opt_fun(x)>=opt_fun(x1):
                x=x1
            else:
                if random.random()<=p(x,x1):
                    x=x1
                else:
                    continue
        T=T*alpha
        count_number=count_number+1
        print("当前执行第{}".format(count_number),"次退火过程","  当前退火温度为:{}".format(T),"  当前最优值:{}".format(opt_fun(x)))
    print("*******************************************************************************************************************")
    print("本次退火优化过程共执行{}".format(count_number),"次求得的最优解为:{}".format(opt_fun(x)))
    print("*******************************************************************************************************************")
Annealing_cycle()

3.算法效果展示

相关推荐
qq_4298796727 分钟前
省略号和可变参数模板
开发语言·c++·算法
飞川撸码1 小时前
【LeetCode 热题100】网格路径类 DP 系列题:不同路径 & 最小路径和(力扣62 / 64 )(Go语言版)
算法·leetcode·golang·动态规划
Neil今天也要学习2 小时前
永磁同步电机参数辨识算法--IPMSM拓展卡尔曼滤波全参数辨识
单片机·嵌入式硬件·算法
yzx9910132 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
亮亮爱刷题3 小时前
算法练习-回溯
算法
眼镜哥(with glasses)3 小时前
蓝桥杯 国赛2024python(b组)题目(1-3)
数据结构·算法·蓝桥杯
老胖闲聊6 小时前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.1186 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之7 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
lyaihao8 小时前
使用python实现奔跑的线条效果
python·绘图