数学建模--退火算法求解最值的Python实现

目录

1.算法流程简介

2.算法核心代码

3.算法效果展示

1.算法流程简介

复制代码
"""
1.设定退火算法的基础参数
2.设定需要优化的函数,求解该函数的最小值/最大值
3.进行退火过程,随机产生退火解并且纠正,直到冷却
4.绘制可视化图片进行了解退火整体过程
"""

2.算法核心代码

复制代码
#利用退火算法求解函数的极值(优化问题)
import numpy as np
from random import random
import random
import math
import matplotlib.pyplot as plt
#设定退火算法的基础参数
x_min,x_max=(-3,3)#x的取值范围
alpha=0.99#降温系数为0.99
bg_temp=100#起始温度
ed_temp=0.01#最终温度(可设可不设)
cycle_number=500#循环次数
#设定需要优化的函数,求解该函数的最小值
"""
需要运用的化直接修改函数即可.
不过需要注意定义域的问题,主动修改一下定义域就行
"""
def opt_fun(x):
    y=11*np.sin(2*x)+7*np.cos(5*x)
    return y
#由于没有具体的数据,我们直接随机设置值就行随机产生初始值

#随机产生本次退火解
def new_result(x):
    x1=x+bg_temp*random.uniform(-1,1)
    #退火解的合理性检查并且纠正:
    if  x_min<=x1<=x_max:
        return x1
    elif x1<x_min:
        add_min=random.uniform(-1,1)
        return add_min*x_min+(1-add_min)*x
    else:
        add_max=random.uniform(-1,1)
        return add_max*x_max+(1-add_max)*x
def draw_picture(x):
    plt.cla()
    #绘图的时候这里可以进行修改
    #注意这里y的取值范围[-25,25]要大体预估一下
    plt.axis([x_min-1,x_max+1,-25,25])
    m=np.arange(x_min,x_max,0.0001)
    plt.plot(m,opt_fun(m),color='red')
    plt.plot(x,opt_fun(x),marker='*',color='b',markersize='8')
    plt.title('Current Temperature={}'.format(T))
    plt.pause(0.1)

#设定接受概率函数
def p(x,x1):
    return math.exp(-abs(opt_fun(x)-opt_fun(x1))/T)

#循环退火过程,直到冷却求出最优解
def Annealing_cycle():
    global T
    count_number=0
    T=bg_temp
    x=random.uniform(x_min,x_max)
    print("*******************************************************************************************************************")
    while T>ed_temp:
        draw_picture(x)
        for i in range(cycle_number):
            x1=new_result(x)
            #求解最小值的过程
            if opt_fun(x)>=opt_fun(x1):
                x=x1
            else:
                if random.random()<=p(x,x1):
                    x=x1
                else:
                    continue
        T=T*alpha
        count_number=count_number+1
        print("当前执行第{}".format(count_number),"次退火过程","  当前退火温度为:{}".format(T),"  当前最优值:{}".format(opt_fun(x)))
    print("*******************************************************************************************************************")
    print("本次退火优化过程共执行{}".format(count_number),"次求得的最优解为:{}".format(opt_fun(x)))
    print("*******************************************************************************************************************")
Annealing_cycle()

3.算法效果展示

相关推荐
小途软件6 分钟前
ssm607家政公司服务平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
WJSKad123516 分钟前
传送带物体检测识别_基于YOLO11与RGCSPELAN改进算法_工业视觉检测系统
人工智能·算法·视觉检测
laplace012316 分钟前
Part3 RAG文档切分
笔记·python·中间件·langchain·rag
dhdjjsjs18 分钟前
Day59 PythonStudy
python
brent42319 分钟前
DAY48 Grad-CAM与Hook函数
python
闲人编程24 分钟前
商品管理与库存系统
服务器·网络·数据库·python·api·数据模型·codecapsule
ServBay33 分钟前
8 个 Python 自动化脚本让你告别重复劳动
后端·python
仍然.35 分钟前
JavaDataStructure---排序
数据结构·算法·排序算法
测试老哥38 分钟前
2026最新软件测试面试热点问题(含答案+文档)
自动化测试·软件测试·python·测试工具·面试·职场和发展·测试用例
ZhuNian的学习乐园41 分钟前
LLM知识检索增强:RAG_系统化解析与工程实践
人工智能·算法