主成分分析笔记

主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。

减少失真是指最大化压缩后数据的方差。

记 P P P矩阵为 n × m n\times m n×m( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n个维度。

欲将此数据集降为 k k k维,即求 k × m k\times m k×m的矩阵 A A A。

思路是获得一种针对 n n n维的变换方法,将 n n n位列向量转为 k k k位列向量。然后对全部 m m m组数据分别应用此变换,这样就得到答案。

变换方法是使用形如 A = X P A=XP A=XP的算式。问题变为求 k × n k\times n k×n矩阵 X X X。

引入协方差的概念。

协方差 是刻画两个列向量 X = { x 1 , x 2 , ... , x n } T , Y = { y 1 , y 2 , ... , y n } T X=\{x_1,x_2,\dots,x_n\}^\text{T},Y=\{y_1,y_2,\dots,y_n\}^\text{T} X={x1,x2,...,xn}T,Y={y1,y2,...,yn}T的相异程度。对于同一行来说,两个列向量在此行的数值相差越大,就会使协方差越大。
C o v ( X , Y ) = ∑ i = 1 n ( x i − x ^ ) ( y i − y ^ ) Cov(X,Y)=\sum_{i=1}^{n}{(x_i-\hat{x})(y_i-\hat{y})} Cov(X,Y)=i=1∑n(xi−x^)(yi−y^)

接下来的部分需要线性代数理论进行推导,在此只给出结论。

对于数据集的 n n n个维度来说,方差越大,说明数据之间的差异越大,说明越能区分不同数据,说明此维度越重要,越应该被保留。可以用协方差刻画差异。

本例中将关于 n n n维的所有协方差写成一个 n n n阶方阵 Q Q Q,其中 Q i , j Q_{i,j} Qi,j表示 C o v ( P i , P j ) Cov(P_i,P_j) Cov(Pi,Pj), P i P_i Pi表示 P P P的第 i i i行,也就是所有数据的第 i i i个维度。

至此便直接给出计算方法。

  1. 计算 Q Q Q;
  2. 求 Q Q Q的 n n n个特征值及其对应的特征(行)向量,将它们按照特征值从大到小的顺序排列,组成新的方阵 R R R;
  3. 取 R R R的前 k k k行,即 k × n k\times n k×n的矩阵 X X X;
  4. A = X P A=XP A=XP。
相关推荐
CXDNW3 分钟前
【网络面试篇】HTTP(2)(笔记)——http、https、http1.1、http2.0
网络·笔记·http·面试·https·http2.0
使者大牙3 分钟前
【大语言模型学习笔记】第一篇:LLM大规模语言模型介绍
笔记·学习·语言模型
___Dream8 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
ssf-yasuo16 分钟前
SPIRE: Semantic Prompt-Driven Image Restoration 论文阅读笔记
论文阅读·笔记·prompt
ajsbxi28 分钟前
苍穹外卖学习记录
java·笔记·后端·学习·nginx·spring·servlet
TeYiToKu1 小时前
笔记整理—linux驱动开发部分(9)framebuffer驱动框架
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件·arm
dsywws1 小时前
Linux学习笔记之时间日期和查找和解压缩指令
linux·笔记·学习
西柚小萌新2 小时前
8.机器学习--决策树
人工智能·决策树·机器学习
cuisidong19973 小时前
5G学习笔记三之物理层、数据链路层、RRC层协议
笔记·学习·5g
乌恩大侠3 小时前
5G周边知识笔记
笔记·5g