主成分分析笔记

主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。

减少失真是指最大化压缩后数据的方差。

记 P P P矩阵为 n × m n\times m n×m( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n个维度。

欲将此数据集降为 k k k维,即求 k × m k\times m k×m的矩阵 A A A。

思路是获得一种针对 n n n维的变换方法,将 n n n位列向量转为 k k k位列向量。然后对全部 m m m组数据分别应用此变换,这样就得到答案。

变换方法是使用形如 A = X P A=XP A=XP的算式。问题变为求 k × n k\times n k×n矩阵 X X X。

引入协方差的概念。

协方差 是刻画两个列向量 X = { x 1 , x 2 , ... , x n } T , Y = { y 1 , y 2 , ... , y n } T X=\{x_1,x_2,\dots,x_n\}^\text{T},Y=\{y_1,y_2,\dots,y_n\}^\text{T} X={x1,x2,...,xn}T,Y={y1,y2,...,yn}T的相异程度。对于同一行来说,两个列向量在此行的数值相差越大,就会使协方差越大。
C o v ( X , Y ) = ∑ i = 1 n ( x i − x ^ ) ( y i − y ^ ) Cov(X,Y)=\sum_{i=1}^{n}{(x_i-\hat{x})(y_i-\hat{y})} Cov(X,Y)=i=1∑n(xi−x^)(yi−y^)

接下来的部分需要线性代数理论进行推导,在此只给出结论。

对于数据集的 n n n个维度来说,方差越大,说明数据之间的差异越大,说明越能区分不同数据,说明此维度越重要,越应该被保留。可以用协方差刻画差异。

本例中将关于 n n n维的所有协方差写成一个 n n n阶方阵 Q Q Q,其中 Q i , j Q_{i,j} Qi,j表示 C o v ( P i , P j ) Cov(P_i,P_j) Cov(Pi,Pj), P i P_i Pi表示 P P P的第 i i i行,也就是所有数据的第 i i i个维度。

至此便直接给出计算方法。

  1. 计算 Q Q Q;
  2. 求 Q Q Q的 n n n个特征值及其对应的特征(行)向量,将它们按照特征值从大到小的顺序排列,组成新的方阵 R R R;
  3. 取 R R R的前 k k k行,即 k × n k\times n k×n的矩阵 X X X;
  4. A = X P A=XP A=XP。
相关推荐
ID_180079054731 天前
小红书笔记详情API接口基础解析:数据结构与调用方式
数据结构·数据库·笔记
wm10431 天前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
北岛寒沫1 天前
北京大学国家发展研究院 经济学原理课程笔记(第二十一课 金融学基础)
经验分享·笔记·学习
优雅的潮叭1 天前
c++ 学习笔记之 malloc
c++·笔记·学习
Yeats_Liao1 天前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
李派森1 天前
软考高项(信息系统项目管理师)—第4章 信息系统管理全解析
笔记·计算机网络
格林威1 天前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
Aurora-Borealis.1 天前
Day27 机器学习流水线
人工智能·机器学习
浩瀚地学1 天前
【Java】常用API(二)
java·开发语言·经验分享·笔记·学习
黑符石2 天前
【论文研读】Madgwick 姿态滤波算法报告总结
人工智能·算法·机器学习·imu·惯性动捕·madgwick·姿态滤波