主成分分析笔记

主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。

减少失真是指最大化压缩后数据的方差。

记 P P P矩阵为 n × m n\times m n×m( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n个维度。

欲将此数据集降为 k k k维,即求 k × m k\times m k×m的矩阵 A A A。

思路是获得一种针对 n n n维的变换方法,将 n n n位列向量转为 k k k位列向量。然后对全部 m m m组数据分别应用此变换,这样就得到答案。

变换方法是使用形如 A = X P A=XP A=XP的算式。问题变为求 k × n k\times n k×n矩阵 X X X。

引入协方差的概念。

协方差 是刻画两个列向量 X = { x 1 , x 2 , ... , x n } T , Y = { y 1 , y 2 , ... , y n } T X=\{x_1,x_2,\dots,x_n\}^\text{T},Y=\{y_1,y_2,\dots,y_n\}^\text{T} X={x1,x2,...,xn}T,Y={y1,y2,...,yn}T的相异程度。对于同一行来说,两个列向量在此行的数值相差越大,就会使协方差越大。
C o v ( X , Y ) = ∑ i = 1 n ( x i − x ^ ) ( y i − y ^ ) Cov(X,Y)=\sum_{i=1}^{n}{(x_i-\hat{x})(y_i-\hat{y})} Cov(X,Y)=i=1∑n(xi−x^)(yi−y^)

接下来的部分需要线性代数理论进行推导,在此只给出结论。

对于数据集的 n n n个维度来说,方差越大,说明数据之间的差异越大,说明越能区分不同数据,说明此维度越重要,越应该被保留。可以用协方差刻画差异。

本例中将关于 n n n维的所有协方差写成一个 n n n阶方阵 Q Q Q,其中 Q i , j Q_{i,j} Qi,j表示 C o v ( P i , P j ) Cov(P_i,P_j) Cov(Pi,Pj), P i P_i Pi表示 P P P的第 i i i行,也就是所有数据的第 i i i个维度。

至此便直接给出计算方法。

  1. 计算 Q Q Q;
  2. 求 Q Q Q的 n n n个特征值及其对应的特征(行)向量,将它们按照特征值从大到小的顺序排列,组成新的方阵 R R R;
  3. 取 R R R的前 k k k行,即 k × n k\times n k×n的矩阵 X X X;
  4. A = X P A=XP A=XP。
相关推荐
superlls2 小时前
(微服务)Dubbo 服务调用
笔记·rpc·dubbo
于小汐在咯4 小时前
词根学习笔记 | Agri系列
笔记·学习
摇滚侠5 小时前
Spring Boot 3零基础教程,Spring Intializer,笔记05
spring boot·笔记·spring
聪明的笨猪猪6 小时前
Java Redis “高可用 — 主从复制”面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
摇滚侠6 小时前
Spring Boot 3零基础教程,Demo小结,笔记04
java·spring boot·笔记
做运维的阿瑞7 小时前
Docker 从入门到精通:完整通关笔记
笔记·docker·容器
Q26433650237 小时前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
jiajixi8 小时前
go-swagger学习笔记
笔记·学习·golang
聪明的笨猪猪8 小时前
Java Spring “AOP” 面试清单(含超通俗生活案例与深度理解)
java·经验分享·笔记·面试
守刃9 小时前
深入解析MySQL索引优化从B+树原理到实战性能调优
决策树