主成分分析笔记

主成分分析是指在尽量减少失真的前提下,将高维数据压缩成低微的方式。

减少失真是指最大化压缩后数据的方差。

记 P P P矩阵为 n × m n\times m n×m( n n n行 m m m列)的矩阵,表示一共有 m m m组数据,每组数据有 n n n个维度。

欲将此数据集降为 k k k维,即求 k × m k\times m k×m的矩阵 A A A。

思路是获得一种针对 n n n维的变换方法,将 n n n位列向量转为 k k k位列向量。然后对全部 m m m组数据分别应用此变换,这样就得到答案。

变换方法是使用形如 A = X P A=XP A=XP的算式。问题变为求 k × n k\times n k×n矩阵 X X X。

引入协方差的概念。

协方差 是刻画两个列向量 X = { x 1 , x 2 , ... , x n } T , Y = { y 1 , y 2 , ... , y n } T X=\{x_1,x_2,\dots,x_n\}^\text{T},Y=\{y_1,y_2,\dots,y_n\}^\text{T} X={x1,x2,...,xn}T,Y={y1,y2,...,yn}T的相异程度。对于同一行来说,两个列向量在此行的数值相差越大,就会使协方差越大。
C o v ( X , Y ) = ∑ i = 1 n ( x i − x ^ ) ( y i − y ^ ) Cov(X,Y)=\sum_{i=1}^{n}{(x_i-\hat{x})(y_i-\hat{y})} Cov(X,Y)=i=1∑n(xi−x^)(yi−y^)

接下来的部分需要线性代数理论进行推导,在此只给出结论。

对于数据集的 n n n个维度来说,方差越大,说明数据之间的差异越大,说明越能区分不同数据,说明此维度越重要,越应该被保留。可以用协方差刻画差异。

本例中将关于 n n n维的所有协方差写成一个 n n n阶方阵 Q Q Q,其中 Q i , j Q_{i,j} Qi,j表示 C o v ( P i , P j ) Cov(P_i,P_j) Cov(Pi,Pj), P i P_i Pi表示 P P P的第 i i i行,也就是所有数据的第 i i i个维度。

至此便直接给出计算方法。

  1. 计算 Q Q Q;
  2. 求 Q Q Q的 n n n个特征值及其对应的特征(行)向量,将它们按照特征值从大到小的顺序排列,组成新的方阵 R R R;
  3. 取 R R R的前 k k k行,即 k × n k\times n k×n的矩阵 X X X;
  4. A = X P A=XP A=XP。
相关推荐
杨浦老苏14 分钟前
简单直观的笔记管理器Poznote
笔记·docker·群晖
椰壳也可2 小时前
06_作业基于CubeMx实现按键控制LED灯(裸机)(立芯嵌入式笔记)
笔记·stm32·学习
im_AMBER4 小时前
Leetcode 52
笔记·学习·算法·leetcode
gorgeous(๑>؂<๑)4 小时前
【ICLR26匿名投稿】OneTrackerV2:统一多模态目标跟踪的“通才”模型
人工智能·机器学习·计算机视觉·目标跟踪
周杰伦_Jay4 小时前
【智能体(Agent)技术深度解析】从架构到实现细节,核心是实现“感知环境→处理信息→决策行动→影响环境”的闭环
人工智能·机器学习·微服务·架构·golang·数据挖掘
ytttr8735 小时前
Landweber迭代算法用于一维、二维图像重建
人工智能·算法·机器学习
wdfk_prog6 小时前
[Linux]学习笔记系列 -- [kernel]kallsyms
linux·笔记·学习
hongjianMa6 小时前
【论文阅读】Hypercomplex Prompt-aware Multimodal Recommendation
论文阅读·python·深度学习·机器学习·prompt·推荐系统
!chen6 小时前
CPP 学习笔记 语法总结
c++·笔记·学习
现在,此刻7 小时前
李沐深度学习笔记D3-线性回归
笔记·深度学习·线性回归