Opencv基于文字检测去图片水印

做了一个简单的去水印功能,基于文字检测去图片水印。效果如下:

插件功能代码参考如下:

cpp 复制代码
using namespace cv::dnn;
TextDetectionModel_DB *textDetector=0;
void getTextDetector()
{
     if(textDetector)return;
     String modelPath = "text_detection_DB_TD500_resnet18_2021sep.onnx";  //模型权重文件

    textDetector=new TextDetectionModel_DB(modelPath);

    float binThresh = 0.3;                                      //二值图的置信度阈值
    float polyThresh  = 0.5 ;                                   //文本多边形阈值
    double unclipRatio = 2.0;      //检测到的文本区域的未压缩比率,gai比率确定输出大小
    uint maxCandidates = 200;

    textDetector->setBinaryThreshold(binThresh)
        .setPolygonThreshold(polyThresh)
        .setUnclipRatio(unclipRatio)
        .setMaxCandidates(maxCandidates);

    double scale = 1.0 / 255.0;
    int height = 736;                                                   //输出图片长宽
    int width = 736;
    Size inputSize = Size(width, height);
    Scalar mean = Scalar(122.67891434, 116.66876762, 104.00698793);
    textDetector->setInputParams(scale, inputSize, mean);

}


void deWaterMarkTextDetection(Mat &input,Mat &output,Mat &src,string)
{
    getTextDetector();
    // 推理
    std::vector<std::vector<Point>> results;
    textDetector->detect(input, results);

    Mat mask = Mat::zeros(input.size(), CV_8U);
    fillPoly(mask, results,Scalar::all(255));


    //将掩模进行膨胀,使其能够覆盖图像更大区域
    Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5));
    dilate(mask, mask, kernel);

    //使用inpaint进行图像修复
    Mat result;
    inpaint(src, mask, output, 1, INPAINT_NS);
}
相关推荐
子夜江寒38 分钟前
基于 OpenCV 的图像形态学与边缘检测
python·opencv·计算机视觉
saoys40 分钟前
Opencv 学习笔记:创建与原图等尺寸的空白图像
笔记·opencv·学习
工藤学编程2 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅3 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技5 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102167 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧7 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)7 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好7 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人