golang并发
谈到golang这门语言,很自然的想起了他的的并发goroutine。这也是这门语言引以为豪的功能点。并发处理,在某种程度上,可以提高我们对机器的使用率,提升系统业务处理能力。但是并不是并发量越大越好,太大了,硬件环境就会吃不消,反而会影响到系统整体性能,甚至奔溃。所以,在使用golang提供便捷的goroutine时,既要能够实现开启并发,也要学会如果控制并发量。
开启golang并发
golang开启并发处理非常简单,只需要在调用函数时,在函数前边添加上go关键字即可。如下边例子所示:
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| package main
import (
``"fmt"
``"time"
)
type Demo struct {
``input chan string
``output chan string
``max_goroutine chan int
}
func NewDemo() *Demo {
``d := new(Demo)
``d.input = make(chan string, 24)
``d.output = make(chan string, 24)
``d.max_goroutine = make(chan int, 20)
``return d
}
func (this *Demo) Goroutine() {
``var i = 1000
``for {
``this.input <- time.Now().Format("2006-01-02 15:04:05")
``time.Sleep(time.Second * 1)
``if i < 0 {
``break
``}
``i--
``}
``close(this.input)
}
func (this *Demo) Handle() {
``for t := range this.input {
``fmt.Println("datatime is :", t)
``this.output <- t
``}
}
func main() {
``demo := NewDemo()
``go demo.Goroutine()
``demo.Handle()
}
|
上边代码,在调用Demo的Goroutine方法时,在前边加上了go关键字,则函数Goroutine并发执行开启成功。
可见,在golang中开启并发非常的方便。
下边再来看看,在golang中,怎么实现并发量的控制。
当goroutine并发执行的任务达到一定值时,主程序等待goroutine执行完成退出,一旦发现并发数量低于某一个设定的值,就从新开始执行主程序逻辑。
实现代码如下:
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| package main
import (
``"fmt"
``"time"
)
type Demo struct {
``input chan string
``output chan string
``goroutine_cnt chan int
}
func NewDemo() *Demo {
``d := new(Demo)
``d.input = make(chan string, 8192)
``d.output = make(chan string, 8192)
``d.goroutine_cnt = make(chan int, 10)
``return d
}
func (this *Demo) Goroutine() {
``this.input <- time.Now().Format("2006-01-02 15:04:05")
``time.Sleep(time.Millisecond * 500)
``<-this.goroutine_cnt
}
func (this *Demo) Handle() {
``for t := range this.input {
``fmt.Println("datatime is :", t, "goroutine count is :", len(this.goroutine_cnt))
``this.output <- t + "handle"
``}
}
func main() {
``demo := NewDemo()
``go demo.Handle()
``for i := 0; i < 10000; i++ {
``demo.goroutine_cnt <- 1
``go demo.Goroutine()
``}
``close(demo.input)
}
|
如上边示例,Goroutine()函数,每隔500毫秒写入一个时间戳到管道中,不考虑管道的读取时间,也就是说,每个Goroutine会存在大概500毫秒时间,如果不做控制的话,一瞬间可以开启上万个甚至更多的goroutine出来,这样系统就会奔溃。
在上述代码中,我们引入了带10个buffer的chan int字段,每创建一个goroutine时,就会向这个chan中写入一个1,每完成一个goroutine时,就会从chan中弹出一个1。当chan中装满10个1时,就会自动阻塞,等待goroutine执行完,弹出chan中的值时,才能继续开启goroutine。通过chan阻塞特点,实现了goroutine的最大并发量控制。