MIT的智慧,利用深度学习来解决了交通堵塞

|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 导读 | 大家都对交通阻塞深恶痛绝。除了让人头疼和错过约会之外,交通拥堵让美国的司机每年多花3000亿美元。 研究人员建议大家使用自动驾驶汽车,即使数量占比并不大,但也能大大改善交通拥堵情况。 Lex Fridman和他的MIT团队开发了一款模拟游戏来加速实现这个未来。DeepTraffic模拟的是典型的公路环境,玩家使用深度学习技术来控制自己的汽车。这款模拟游戏让初学者也能接触并使用复杂的技术概念,同时也推动专家们去开发全新的技术。 |

采用神经网络的交通游戏

假设你在洛杉矶一条拥挤的高速公路上开车。你必须确定好你与前车之间的距离、何时变道,以及如何避免撞到其他车辆。这就是所谓的路径规划。有了DeepTraffic,任何人都可以设计和训练一个深度神经网络来实现上面这些功能。

上个月在硅谷举行的GPU技术大会(GTC)上,Fridman讲述了这款建立在强化学习之上的游戏的设计原理。它通过对神经网络完成指定动作进行奖励来实现AI。通过反反复复的训练和奖励,神经网络最终学会如何运行。

在这个游戏中,神经网络控制一辆红色的汽车在一条拥挤的高速公路上行驶,它的目标是尽可能快地通过公路。初学者可以在浏览器中使用JavaScript来控制参数并改变汽车的行驶。而高级玩家可以使用OpenAI Gym访问DeepTraffic,并可通过OpenAI Gym提供的任意Python接口对网络进行训练。

极速赛车手:DeepTraffic玩家使用深度学习来快速行驶。

DeepTraffic最初是Fridman在MIT为了给学生上课而开发的。当课程内容和这款游戏向公众开放时,受到了大家的热烈欢迎,迄今为止已经有12000人次提交了他们的模型。在游戏排行榜上记录了车速最快,同时也是神经网络速度最快的选手的名单。

游戏的乐趣来自于玩家之间的竞争,而现实世界的奖金要高得多。自动驾驶车辆必须要为到达目的地规划一条安全的路径,这个过程相当的复杂,必须要用到AI。而像DeepTraffic这样的教育工具既有助于培养AI开发人员,也能让改变汽车生态系统的解决方案涌现出来。

你可以在这里找到Fridman在GTC上的完整的演讲(包括PDFMP4)。通过这个演讲,你还能了解到路径规划的层次结构、强化学习的优缺点,以及有关DeepTraffic网络训练的技术细节。

相关推荐
Jay Kay11 分钟前
从0到1理解大语言模型:读《大语言模型:从理论到实践(第2版)》笔记
人工智能·笔记·语言模型
Baihai_IDP13 分钟前
【译】TPU Deep Dive:Google TPU 架构深度分析
人工智能·google·面试
电商API_1800790524715 分钟前
微店商品详情接口micro.item_get请求参数响应参数解析
大数据·数据库·人工智能·爬虫
洛卡卡了16 分钟前
面试官问我会不会用 AI,我拿出这个 Ollama + FastGPT 项目给他看
人工智能·后端·docker
Python测试之道20 分钟前
用LangGraph实现聊天机器人记忆功能的深度解析
人工智能·langchain·prompt
生信宝典21 分钟前
通用温度感知语言模型用于设计具备增强稳定性和活性的蛋白质
人工智能·语言模型·自然语言处理
带电的小王1 小时前
VLA--Gemini Robotics On-Device: 将AI带到本地机器人设备上
人工智能·机器人
终端域名1 小时前
如何解决人工智能在社会治理中面临的技术和伦理挑战?
人工智能·交互技术
倔强的石头1061 小时前
[源力觉醒 创作者计划]_文心大模型4.5开源:从技术突破到生态共建的国产AI解读与本地部署指南
人工智能·开源·文心一言·文心大模型
AI训练师1 小时前
基于深度学习的YOLO框架的道路裂缝智能识别系统【附完整源码+数据集】
人工智能