机器学习入门教学——可解释性

1、前言

  • 近年来,机器学习模型被广泛地应用到现实生活中的一些重要领域,如面部识别、自动驾驶、语言处理和智慧医疗等。
  • 然而,机器学习模型就像一个黑盒子,给予一个输入,就能得到一个决策结果,但是我们并不知道模型是如何做决策的。
  • 因此,可解释性旨在帮助人们理解机器学习模型是如何学习的,它从数据中学到了什么,针对每一个输入它为什么会做出如此决策以及它所做的决策是否可靠。

2、分类

  • 事前可解释性
    • 指在模型训练之前,通过模型本身的设计来提高模型的透明度。
  • 事后可解释性
    • 指在模型训练完成后,通过各种技术来理解模型的工作原理和预测依据。
    • 分类:全局可解释性局部可解释性
      • 全局可解释性:旨在帮助人们理解复杂模型背后的整体逻辑以及内部的工作机制。
      • 局部可解释性:旨在帮助人们理解机器学习模型针对每一个输入样本的决策过程和决策依据。

3、事前可解释性

  • 事前可解释性指模型本身内置可解释性,即对于一个已训练好的学习模型,无需额外的信息 就可以理解模型的决策过程或决策依据。模型的事前可解释性发生在模型训练之前,因而也称 为事前可解释性。

4、事后可解释性

  • 事后可解释性发生在模型训练之后。对于一个给定的训练好的学习模型,事后可解释性旨在利用解释方法或构建解释模型,解释学习模型的工作机制、决策行为和决策依据。

4.1、全局可解释性

  • 全局可解释性旨在帮助人们从整体上理解模型背后的复杂逻辑以及内部的工作机制,例如模型是如何学习的、模型从训练数据中学到了什么、模型是如何进行决策的等。
  • 这要求我们能以人类可理解的方式来表示一个训练好的复杂学习模型,典型的全局解释方法包括规则提取、 模型蒸馏、激活最大化解释等。
  • 例如:
    • 从已经训练好的模型中,理解模型中的神经元所捕获的特征,以我们能够理解的形式表示出来。

4.2、局部可解释性

  • 局部可解释性旨在帮助人们理解学习模型针对每一个特定输入样本的决策过程和决策依据
  • 与全局可解释性不同,模型的局部可解释性以输入样本为导向,通常可以通过分析输入样本 的每一维特征对模型最终决策结果的贡献来实现。
  • 在实际应用中,由于模型算法的不透明性、模型结构的复杂性以及应用场景的多元性,提供对机器学习模型的全局解释通常比提供局部解释更困难,因而针对模型局部可解释性的研究更加广泛,局部解释方法相对于全局解释方法也更常见。
  • 经典的局部解释方法包括敏感性分析解释、局部近似解释、梯度反向传播解释、特征反演解释以及类激活映射解释等。
  • 例如:
    • 通过删除或替换输入中的特征,分析输入中特征对于输出的重要性,得到特征重要度向量(衡量特征重要性的表现形式),即模型会根据哪些特征做出决策。
相关推荐
青松@FasterAI23 分钟前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代38 分钟前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水39 分钟前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
偶尔微微一笑1 小时前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼1 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
晓数1 小时前
【硬核干货】JetBrains AI Assistant 干货笔记
人工智能·笔记·jetbrains·ai assistant
jndingxin1 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
Sherlock Ma2 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
知舟不叙2 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
kadog2 小时前
PubMed PDF下载 cloudpmc-viewer-pow逆向
前端·javascript·人工智能·爬虫·pdf