huggingface 自定义模型finetune训练测试--bert多任务

背景:

需要将bert改为多任务,但是官方仅支持多分类、二分类,并不支持多任务。改为多任务时我们需要修改输出层、loss、评测等。如果需要在bert结尾添加fc等也可以参考该添加方式。

代码

修改model

这里把BertForSequenceClassification改为多任务

python 复制代码
import torch
import torch.nn as nn
from typing import List, Optional, Tuple, Union
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers import BertPreTrainedModel, BertModel
from transformers.modeling_outputs import SequenceClassifierOutput
from transformers import BertPreTrainedModel, BertModel
from transformers.utils import add_start_docstrings_to_model_forward, add_code_sample_docstrings,add_start_docstrings
from transformers import BertPreTrainedModel, BertModel
from transformers.utils import add_start_docstrings_to_model_forward, add_code_sample_docstrings,add_start_docstrings

_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "textattack/bert-base-uncased-yelp-polarity"
_CONFIG_FOR_DOC = "BertConfig"
_SEQ_CLASS_EXPECTED_OUTPUT = "'LABEL_1'"
_SEQ_CLASS_EXPECTED_LOSS = 0.01
BERT_START_DOCSTRING = r"""

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`BertConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

@add_start_docstrings(
    """
    Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
    output) e.g. for GLUE tasks.
    """,
    BERT_START_DOCSTRING,
)
class BertForSequenceClassification_Multitask(BertPreTrainedModel):
    def __init__(self, config, task_output_dims):
        super().__init__(config)
        self.task_output_dims = task_output_dims
        
        self.num_labels = config.num_labels
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifiers=nn.ModuleList([nn.Linear(768,output_dim) for output_dim in task_output_dims])
        # Initialize weights and apply final processing
        self.post_init()
    @add_start_docstrings_to_model_forward(BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
        expected_output=_SEQ_CLASS_EXPECTED_OUTPUT,
        expected_loss=_SEQ_CLASS_EXPECTED_LOSS,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        if self.config.problem_type == 'multi_task_classification':
            logits=[classifier(pooled_output) for classifier in self.classifiers]
        else:
            logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                elif labels.dtype==list:
                    self.config.problem_type = "multi_task_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
            elif self.config.problem_type == "multi_task_classification":
                loss_fct = CrossEntropyLoss()
                loss_list=[loss_fct(logits[i],labels[:,i]) for i in range(len(self.task_output_dims))]
                loss=torch.sum(torch.stack(loss_list))
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
python 复制代码
# 调用时
# 原调用为
model = BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=2, hidden_dropout_prob=dropout)
# 现改为
model = BertForSequenceClassification_Multitask.from_pretrained(pretrained_model_name_or_path, num_labels=len(pjwk_cates), hidden_dropout_prob=dropout, task_output_dims=[6,63], problem_type = "multi_task_classification")

测试加载模型时

测试时,在load_checkpoint时,由于原有文件中没有problem_type ="multi_task_classification",需要添加。可以哪里报错再加入。我的文件是/home/anaconda3/envs/bert/lib/python3.8/site-packages/transformers/configuration_utils.py第347行。

python 复制代码
# 加入multi_task_classification
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification","multi_task_classification")
相关推荐
IT_陈寒11 分钟前
Python开发者必看!10个高效数据处理技巧让你的Pandas代码提速300%
前端·人工智能·后端
新智元38 分钟前
全球 AI 视频大战升级!「中国版 Sora」Vidu Q2 参考生月底发布,能力对标 Sora 2
人工智能·openai
新智元1 小时前
刚刚,Figure 03 惊天登场!四年狂造 10 万台,人类保姆集体失业
人工智能·openai
万猫学社1 小时前
我们为什么需要Agent?
人工智能
CoovallyAIHub1 小时前
告别等待!十条高效PyTorch数据增强流水线,让你的GPU不再"饥饿"
深度学习·算法·计算机视觉
共绩算力2 小时前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
工藤学编程2 小时前
零基础学AI大模型之Stream流式输出实战
人工智能
不良人龍木木2 小时前
机器学习-常用库
人工智能·机器学习
罗橙7号2 小时前
【pyTorch】关于PyTorch的高级索引机制理解
人工智能·pytorch·python
rengang662 小时前
09-随机森林:介绍集成学习中通过多决策树提升性能的算法
人工智能·算法·随机森林·机器学习·集成学习