YOLO的基本原理详解

YOLO介绍

YOLO是一种新的目标检测方法。以前的目标检测方法通过重新利用分类器来执行检测。与先前的方案不同,将目标检测看作回归问题从空间上定位边界框(bounding box)并预测该框的类别概率。使用单个神经网络,在一次评估中直接从完整图像上预测边界框和类别概率。由于整个检测流程仅用一个网络,所以可以直接对检测性能进行端到端的优化。

在正式介绍YOLO之前,我们来看一张图:

可以看出YOLO的最大特点是速度快。YOLO在精度上仍然落后于目前最先进的检测系统。虽然它可以快速识别图像中的目标,但它在定位某些物体尤其是小的物体上精度不高。进入到真正端到端的目标检测:直接在网络中提取特征来预测物体分类和位置。

YOLO结构

整体结构就是三部分组成:GoogleNet+4个卷积+2个FC

相关推荐
用户51914958484515 分钟前
Braintree iOS Drop-in SDK - 一站式支付解决方案
人工智能·aigc
科技小郑17 分钟前
吱吱企业即时通讯以安全为基,重塑安全办公新体验
大数据·网络·人工智能·安全·信息与通信·吱吱企业通讯
就叫飞六吧19 分钟前
生产环境禁用AI框架工具回调:安全风险与最佳实践
人工智能·安全
胡乱编胡乱赢36 分钟前
关于在pycharm终端连接服务器
人工智能·深度学习·pycharm·终端连接服务器
盼小辉丶43 分钟前
DenseNet详解与实现
深度学习·keras·tensorflow2
聚客AI44 分钟前
⚠️Embedding选型指南:五步搞定数据规模、延迟与精度平衡!
人工智能·llm·掘金·日新计划
h_k100861 小时前
Manus AI与多语言手写识别
人工智能
就是一顿骚操作1 小时前
mcp解读——概述及整体架构
人工智能·大模型
程序猿阿伟1 小时前
《云原生边缘与AI训练场景:2类高频隐蔽Bug的深度排查与架构修复》
人工智能·云原生·bug
l1t1 小时前
利用美团龙猫添加xlsx的sheet.xml读取sharedStrings.xml中共享字符串输出到csv功能
xml·c语言·数据结构·人工智能·算法·解析器