YOLO的基本原理详解

YOLO介绍

YOLO是一种新的目标检测方法。以前的目标检测方法通过重新利用分类器来执行检测。与先前的方案不同,将目标检测看作回归问题从空间上定位边界框(bounding box)并预测该框的类别概率。使用单个神经网络,在一次评估中直接从完整图像上预测边界框和类别概率。由于整个检测流程仅用一个网络,所以可以直接对检测性能进行端到端的优化。

在正式介绍YOLO之前,我们来看一张图:

可以看出YOLO的最大特点是速度快。YOLO在精度上仍然落后于目前最先进的检测系统。虽然它可以快速识别图像中的目标,但它在定位某些物体尤其是小的物体上精度不高。进入到真正端到端的目标检测:直接在网络中提取特征来预测物体分类和位置。

YOLO结构

整体结构就是三部分组成:GoogleNet+4个卷积+2个FC

相关推荐
七月稻草人几秒前
CANN生态ops-nn:AIGC的神经网络算子加速内核
人工智能·神经网络·aigc
2501_92487873几秒前
数据智能驱动进化:AdAgent 多触点归因与自我学习机制详解
人工智能·逻辑回归·动态规划
芷栀夏2 分钟前
CANN开源实战:基于DrissionPage构建企业级网页自动化与数据采集系统
运维·人工智能·开源·自动化·cann
物联网APP开发从业者3 分钟前
2026年AI智能软硬件开发领域十大权威认证机构深度剖析
人工智能
MSTcheng.7 分钟前
构建自定义算子库:基于ops-nn和aclnn两阶段模式的创新指南
人工智能·cann
User_芊芊君子10 分钟前
CANN图编译器GE全面解析:构建高效异构计算图的核心引擎
人工智能·深度学习·神经网络
lili-felicity10 分钟前
CANN加速Whisper语音识别推理:流式处理与实时转录优化
人工智能·whisper·语音识别
沈浩(种子思维作者)11 分钟前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
行走的小派13 分钟前
引爆AI智能体时代!OPi 6Plus全面适配OpenClaw
人工智能
云边有个稻草人14 分钟前
CANN:解构AIGC底层算力,ops-nn驱动神经网络算子加速
人工智能·神经网络·aigc·cann