elasticsearch的数据聚合

聚合可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?

  • 这些手机的平均价格、最高价格、最低价格?

  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果

聚合种类

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组

    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组

  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值

    • Max:求最大值

    • Min:求最小值

    • Stats:同时求max、min、avg、sum等

  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

DSL实现聚合

语句

GET /hotel/_search
{
  "size": 0,
  "aggs": {
    "brandAgg": {
    "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}
  • 设置size为0,结果中不包含文档,只包含聚合结果
  • aggs定义聚合
  • brandAgg给聚合起个名字
  • terms聚合的类型,按照品牌值聚合,所以选择term
  • field参与聚合的字段
  • terms里面的sezi希望获取的聚合结果数量

发起请求的结果

聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为count,并且按照count降序排序。

我们可以指定order属性,自定义聚合的排序方式,按照_count降序排列

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "desc"  
          },
        "size": 20
      }
    }
  }
}

发起请求的结果, 按照_count降序排列。

限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。我们可以限定要聚合的文档范围,只要添加query条件即可。

只对200元以下的文档聚合

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200  
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

聚合得到的品牌明显变少了

Metric聚合语法

现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值

score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { 
        "score_stats": { 
        "stats": { 
          "field": "score" 
          }
        }
      }
    }
  }
}

我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序,score_stats.avg对score聚合函数的平均值进行降序排序。

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20,
        "order": {
          "score_stats.avg": "desc"
        }
      },
      "aggs": { 
        "score_stats": { 
        "stats": { 
          "field": "score" 
          }
        }
      }
    }
  }
}

小结

aggs代表聚合,与query同级

聚合必须的三要素:

  • 聚合名称

  • 聚合类型

  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量

  • order:指定聚合结果排序方式

  • field:指定聚合字段

java代码实现聚合

搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的

controller类

java 复制代码
import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.List;
import java.util.Map;

@RestController
@RequestMapping("/hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;


    @PostMapping("filters")
    public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
        return hotelService.getFilters(params);
    }
}

service类

java 复制代码
import cn.itcast.hotel.mapper.HotelMapper;
import cn.itcast.hotel.pojo.Hotel;
import cn.itcast.hotel.pojo.HotelDoc;
import cn.itcast.hotel.pojo.PageResult;
import cn.itcast.hotel.pojo.RequestParams;
import cn.itcast.hotel.service.IHotelService;
import com.alibaba.fastjson.JSON;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import org.elasticsearch.action.search.SearchRequest;
import org.elasticsearch.action.search.SearchResponse;

import org.elasticsearch.client.RequestOptions;
import org.elasticsearch.client.RestHighLevelClient;
import org.elasticsearch.common.geo.GeoPoint;
import org.elasticsearch.common.unit.DistanceUnit;
import org.elasticsearch.index.query.BoolQueryBuilder;
import org.elasticsearch.index.query.QueryBuilders;
import org.elasticsearch.index.query.functionscore.FunctionScoreQueryBuilder;
import org.elasticsearch.index.query.functionscore.ScoreFunctionBuilders;
import org.elasticsearch.search.SearchHit;
import org.elasticsearch.search.SearchHits;
import org.elasticsearch.search.aggregations.AggregationBuilders;
import org.elasticsearch.search.aggregations.Aggregations;
import org.elasticsearch.search.aggregations.bucket.terms.Terms;
import org.elasticsearch.search.sort.SortBuilders;
import org.elasticsearch.search.sort.SortOrder;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {

    @Autowired
    private RestHighLevelClient client;

    

    @Override
    public Map<String, List<String>> getFilters(RequestParams params) {
        try {
            // 1.准备Request
            SearchRequest request = new SearchRequest("hotel");
            // 2.准备DSL
            // 2.1.query
            // buildBasicQuery(params, request);
            // 2.2.设置size
            request.source().size(0);
            // 2.3.聚合
            buildAggregation(request);
            // 3.发出请求
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);
            // 4.解析结果
            Map<String, List<String>> result = new HashMap<>();
            Aggregations aggregations = response.getAggregations();
            // 4.1.根据品牌名称,获取品牌结果
            List<String> brandList = getAggByName(aggregations, "brandAgg");
            result.put("品牌", brandList);
            // 4.2.根据品牌名称,获取品牌结果
            List<String> cityList = getAggByName(aggregations, "cityAgg");
            result.put("城市", cityList);
            // 4.3.根据品牌名称,获取品牌结果
            List<String> starList = getAggByName(aggregations, "starAgg");
            result.put("星级", starList);

            return result;
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }
    private void buildAggregation(SearchRequest request) {
        request.source().aggregation(AggregationBuilders
                .terms("brandAgg")
                .field("brand")
                .size(100)
        );
        request.source().aggregation(AggregationBuilders
                .terms("cityAgg")
                .field("city")
                .size(100)
        );
        request.source().aggregation(AggregationBuilders
                .terms("starAgg")
                .field("starName")
                .size(100)
        );
    }

    private List<String> getAggByName(Aggregations aggregations, String aggName) {
        // 4.1.根据聚合名称获取聚合结果
        Terms brandTerms = aggregations.get(aggName);
        // 4.2.获取buckets
        List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
        // 4.3.遍历
        List<String> brandList = new ArrayList<>();
        for (Terms.Bucket bucket : buckets) {
            // 4.4.获取key
            String key = bucket.getKeyAsString();
            brandList.add(key);
        }
        return brandList;
    }
   
   
}

发送请求,获得结果

相关推荐
武子康1 小时前
大数据-258 离线数仓 - Griffin架构 配置安装 Livy 架构设计 解压配置 Hadoop Hive
java·大数据·数据仓库·hive·hadoop·架构
lucky_syq3 小时前
Flume和Kafka的区别?
大数据·kafka·flume
AI_NEW_COME3 小时前
构建全方位大健康零售帮助中心:提升服务与体验
大数据·人工智能
it噩梦4 小时前
es 中 terms set 使用
大数据·elasticsearch
中科岩创4 小时前
中科岩创边坡自动化监测解决方案
大数据·网络·物联网
DolphinScheduler社区5 小时前
作业帮基于 Apache DolphinScheduler 3_0_0 的缺陷修复与优化
大数据
SeaTunnel5 小时前
京东科技基于 Apache SeaTunnel 复杂场景适配 #数据集成
大数据
喝醉酒的小白6 小时前
Elasticsearch 配置文件
大数据·elasticsearch·搜索引擎
一只敲代码的猪6 小时前
Llama 3 模型系列解析(一)
大数据·python·llama
智慧化智能化数字化方案7 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南