An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。

GPT-3对基于小样本知识的VQA的实证研究

摘要

基于知识的视觉问答(VQA)涉及回答需要图像中不存在的外部知识的问题。现有的方法首先从外部资源中检索知识,然后对所选知识、输入图像和问答预测进行推理。然而,这种两步走的方法可能会导致失配,从而潜在地限制VQA性能。例如,检索到的知识可能是嘈杂的,与问题无关,并且在推理过程中重新嵌入的知识特征可能偏离其在知识库(KB)中的原始含义。为了应对这一挑战,我们提出了PICa,这是一种简单而有效的方法,通过使用图像字幕来提示GPT3,用于基于知识的VQA。受GPT-3在知识检索和问答方面的能力的启发,我们不再像以前的工作那样使用结构化知识库,而是将GPT-3视为一种隐式和非结构化知识库来联合获取和处理相关知识。具体来说,我们首先将图像转换为GPT-3能够理解的字幕(或标签),然后通过提供几个上下文中的VQA示例,调整GPT-3以以多样本的方式解决VQA任务。我们通过仔细研究来进一步提高性能:(i)什么样的文本格式最能描述图像内容,以及(ii)如何更好地选择和使用上下文中的示例。PICa解锁了GPT-3在多模式任务中的首次使用。通过仅使用16个示例,PICa在OK-VQA数据集上以绝对值+8.6分的优势超过了监督的现有技术。我们还在VQAv2上对PICa进行了基准测试,其中PICa也表现出了不错的小样本性能。

引言

相关工作

方法

OK-VQA上的实验

VQAv2上的实验

结论

我们提出了PICa,这是一种使用GPT-3进行基于小样本的VQA的方法。PICa没有使用明确的结构化知识库来检索和推理外部知识,而是通过提示GPT-3来联合获取和处理相关知识。它继承了GPT-3强大的小样本能力,并以显著的优势超过了OK-VQA上的监督技术。分析表明,我们的方法隐含地获取了相关知识来回答问题。

相关推荐
浪浪山_大橙子3 分钟前
使用Electron+Vue3开发Qwen3 2B桌面应用:从想法到实现的完整指南
前端·人工智能
亚马逊云开发者3 分钟前
【Agentic AI for Data系列】Kiro实战:DuckDB vs Spark技术选型全流程
人工智能
QT 小鲜肉4 分钟前
【孙子兵法之下篇】010. 孙子兵法·地形篇
人工智能·笔记·读书·孙子兵法
Jay20021114 分钟前
【机器学习】30 基于内容的过滤算法
人工智能·算法·机器学习
极客BIM工作室16 分钟前
ControlNet里的“隐形连接器”:零卷积(Zero Convolution)的工作流程
人工智能·机器学习
北京耐用通信17 分钟前
阀岛的“超级大脑”:耐达讯自动化网关让EtherNet/IP转DeviceNet“说同一种语言”
人工智能·物联网·网络协议·网络安全·自动化·信息与通信
泡泡茶壶_ovo28 分钟前
PixCLIP:通过任意粒度像素-文本对齐学习实现细粒度视觉语言理解
人工智能·计算机视觉·对比学习·imagecaptioning
袋鼠云数栈30 分钟前
AI的下半场,产业需要一个怎样的数据中台?
大数据·人工智能·数据挖掘
龙邱科技32 分钟前
21届智能车竞赛走马观碑组「灵眼LQUGSCV1」高帧率彩色USB摄像头实测!
人工智能·计算机视觉·目标跟踪