An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。

GPT-3对基于小样本知识的VQA的实证研究

摘要

基于知识的视觉问答(VQA)涉及回答需要图像中不存在的外部知识的问题。现有的方法首先从外部资源中检索知识,然后对所选知识、输入图像和问答预测进行推理。然而,这种两步走的方法可能会导致失配,从而潜在地限制VQA性能。例如,检索到的知识可能是嘈杂的,与问题无关,并且在推理过程中重新嵌入的知识特征可能偏离其在知识库(KB)中的原始含义。为了应对这一挑战,我们提出了PICa,这是一种简单而有效的方法,通过使用图像字幕来提示GPT3,用于基于知识的VQA。受GPT-3在知识检索和问答方面的能力的启发,我们不再像以前的工作那样使用结构化知识库,而是将GPT-3视为一种隐式和非结构化知识库来联合获取和处理相关知识。具体来说,我们首先将图像转换为GPT-3能够理解的字幕(或标签),然后通过提供几个上下文中的VQA示例,调整GPT-3以以多样本的方式解决VQA任务。我们通过仔细研究来进一步提高性能:(i)什么样的文本格式最能描述图像内容,以及(ii)如何更好地选择和使用上下文中的示例。PICa解锁了GPT-3在多模式任务中的首次使用。通过仅使用16个示例,PICa在OK-VQA数据集上以绝对值+8.6分的优势超过了监督的现有技术。我们还在VQAv2上对PICa进行了基准测试,其中PICa也表现出了不错的小样本性能。

引言

相关工作

方法

OK-VQA上的实验

VQAv2上的实验

结论

我们提出了PICa,这是一种使用GPT-3进行基于小样本的VQA的方法。PICa没有使用明确的结构化知识库来检索和推理外部知识,而是通过提示GPT-3来联合获取和处理相关知识。它继承了GPT-3强大的小样本能力,并以显著的优势超过了OK-VQA上的监督技术。分析表明,我们的方法隐含地获取了相关知识来回答问题。

相关推荐
serve the people1 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8922 小时前
前端机器学习
人工智能·机器学习
陈天伟教授2 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108242 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10112 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里2 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
0***R5152 小时前
人工智能在金融风控中的应用
人工智能
2501_941403762 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
youngerwang3 小时前
【字节跳动 AI 原生 IDE TRAE 】
ide·人工智能·trae
youngerwang3 小时前
AI 编程环境与主流 AI IDE 对比分析报告
ide·人工智能