An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。

GPT-3对基于小样本知识的VQA的实证研究

摘要

基于知识的视觉问答(VQA)涉及回答需要图像中不存在的外部知识的问题。现有的方法首先从外部资源中检索知识,然后对所选知识、输入图像和问答预测进行推理。然而,这种两步走的方法可能会导致失配,从而潜在地限制VQA性能。例如,检索到的知识可能是嘈杂的,与问题无关,并且在推理过程中重新嵌入的知识特征可能偏离其在知识库(KB)中的原始含义。为了应对这一挑战,我们提出了PICa,这是一种简单而有效的方法,通过使用图像字幕来提示GPT3,用于基于知识的VQA。受GPT-3在知识检索和问答方面的能力的启发,我们不再像以前的工作那样使用结构化知识库,而是将GPT-3视为一种隐式和非结构化知识库来联合获取和处理相关知识。具体来说,我们首先将图像转换为GPT-3能够理解的字幕(或标签),然后通过提供几个上下文中的VQA示例,调整GPT-3以以多样本的方式解决VQA任务。我们通过仔细研究来进一步提高性能:(i)什么样的文本格式最能描述图像内容,以及(ii)如何更好地选择和使用上下文中的示例。PICa解锁了GPT-3在多模式任务中的首次使用。通过仅使用16个示例,PICa在OK-VQA数据集上以绝对值+8.6分的优势超过了监督的现有技术。我们还在VQAv2上对PICa进行了基准测试,其中PICa也表现出了不错的小样本性能。

引言

相关工作

方法

OK-VQA上的实验

VQAv2上的实验

结论

我们提出了PICa,这是一种使用GPT-3进行基于小样本的VQA的方法。PICa没有使用明确的结构化知识库来检索和推理外部知识,而是通过提示GPT-3来联合获取和处理相关知识。它继承了GPT-3强大的小样本能力,并以显著的优势超过了OK-VQA上的监督技术。分析表明,我们的方法隐含地获取了相关知识来回答问题。

相关推荐
yugi9878383 分钟前
用于图像分类的EMAP:概念、实现与工具支持
人工智能·计算机视觉·分类
aigcapi6 分钟前
AI搜索排名提升:GEO优化如何成为企业增长新引擎
人工智能
彼岸花开了吗11 分钟前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换
人工智能·python·llm
MM_MS12 分钟前
Halcon图像锐化和图像增强、窗口的相关算子
大数据·图像处理·人工智能·opencv·算法·计算机视觉·视觉检测
韩师傅18 分钟前
前端开发消亡史:AI也无法掩盖没有设计创造力的真相
前端·人工智能·后端
AI大佬的小弟20 分钟前
【小白第一课】大模型基础知识(1)---大模型到底是啥?
人工智能·自然语言处理·开源·大模型基础·大模型分类·什么是大模型·国内外主流大模型
lambo mercy27 分钟前
无监督学习
人工智能·深度学习
阿里巴巴P8资深技术专家27 分钟前
基于 Spring AI 和 Redis 向量库的智能对话系统实践
人工智能·redis·spring
sunfove40 分钟前
致暗夜行路者:科研低谷期的自我心理重建
人工智能
GAOJ_K1 小时前
丝杆模组精度下降的预警信号
人工智能·科技·机器人·自动化·制造