An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。

GPT-3对基于小样本知识的VQA的实证研究

摘要

基于知识的视觉问答(VQA)涉及回答需要图像中不存在的外部知识的问题。现有的方法首先从外部资源中检索知识,然后对所选知识、输入图像和问答预测进行推理。然而,这种两步走的方法可能会导致失配,从而潜在地限制VQA性能。例如,检索到的知识可能是嘈杂的,与问题无关,并且在推理过程中重新嵌入的知识特征可能偏离其在知识库(KB)中的原始含义。为了应对这一挑战,我们提出了PICa,这是一种简单而有效的方法,通过使用图像字幕来提示GPT3,用于基于知识的VQA。受GPT-3在知识检索和问答方面的能力的启发,我们不再像以前的工作那样使用结构化知识库,而是将GPT-3视为一种隐式和非结构化知识库来联合获取和处理相关知识。具体来说,我们首先将图像转换为GPT-3能够理解的字幕(或标签),然后通过提供几个上下文中的VQA示例,调整GPT-3以以多样本的方式解决VQA任务。我们通过仔细研究来进一步提高性能:(i)什么样的文本格式最能描述图像内容,以及(ii)如何更好地选择和使用上下文中的示例。PICa解锁了GPT-3在多模式任务中的首次使用。通过仅使用16个示例,PICa在OK-VQA数据集上以绝对值+8.6分的优势超过了监督的现有技术。我们还在VQAv2上对PICa进行了基准测试,其中PICa也表现出了不错的小样本性能。

引言

相关工作

方法

OK-VQA上的实验

VQAv2上的实验

结论

我们提出了PICa,这是一种使用GPT-3进行基于小样本的VQA的方法。PICa没有使用明确的结构化知识库来检索和推理外部知识,而是通过提示GPT-3来联合获取和处理相关知识。它继承了GPT-3强大的小样本能力,并以显著的优势超过了OK-VQA上的监督技术。分析表明,我们的方法隐含地获取了相关知识来回答问题。

相关推荐
王潇洒呀1 天前
AI+测试工具《Testim》使用说明
人工智能·测试工具
软件测试君1 天前
2025年10款王炸AI测试工具,你用过几款?
自动化测试·软件测试·人工智能·深度学习·测试工具·单元测试·ai测试工具
因_果_律1 天前
AWS 自研 AI 芯片 Trainium3 全面解析
人工智能·云计算·aws
weixin_397578021 天前
LLM应用开发九: 开源智能体平台
人工智能
二号小明1 天前
AutoGLM-Phone 9B 端侧智能体:基于 vLLM 与 Docker 的云端部署与 ADB 联调指南
人工智能·计算机视觉·自然语言处理·智能手机
Swift社区1 天前
AI赋能智汇高校 - 从零掌握大模型本地部署与微调全流程
人工智能·深度学习·语言模型
极小狐1 天前
极狐GitLab 18.7 版本发布,带来了改进的 GitLab Duo 分析仪表盘与密钥有效性校验、支持为聊天和智能体选择 AI 模型,以及更多新功能!
人工智能·gitlab
sld1681 天前
深度解析 S2B2C 模式:重构商业生态,赋能企业高效增长
大数据·人工智能·重构
一只鹿鹿鹿1 天前
springboot集成工作流教程(全面集成以及源码)
大数据·运维·数据库·人工智能·web安全
小陈永不服输1 天前
2025 AI元年:软件行业的颠覆性洗牌与生态重构
人工智能·重构