An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA

本文是LLM系列文章,针对《An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA》的翻译。

GPT-3对基于小样本知识的VQA的实证研究

摘要

基于知识的视觉问答(VQA)涉及回答需要图像中不存在的外部知识的问题。现有的方法首先从外部资源中检索知识,然后对所选知识、输入图像和问答预测进行推理。然而,这种两步走的方法可能会导致失配,从而潜在地限制VQA性能。例如,检索到的知识可能是嘈杂的,与问题无关,并且在推理过程中重新嵌入的知识特征可能偏离其在知识库(KB)中的原始含义。为了应对这一挑战,我们提出了PICa,这是一种简单而有效的方法,通过使用图像字幕来提示GPT3,用于基于知识的VQA。受GPT-3在知识检索和问答方面的能力的启发,我们不再像以前的工作那样使用结构化知识库,而是将GPT-3视为一种隐式和非结构化知识库来联合获取和处理相关知识。具体来说,我们首先将图像转换为GPT-3能够理解的字幕(或标签),然后通过提供几个上下文中的VQA示例,调整GPT-3以以多样本的方式解决VQA任务。我们通过仔细研究来进一步提高性能:(i)什么样的文本格式最能描述图像内容,以及(ii)如何更好地选择和使用上下文中的示例。PICa解锁了GPT-3在多模式任务中的首次使用。通过仅使用16个示例,PICa在OK-VQA数据集上以绝对值+8.6分的优势超过了监督的现有技术。我们还在VQAv2上对PICa进行了基准测试,其中PICa也表现出了不错的小样本性能。

引言

相关工作

方法

OK-VQA上的实验

VQAv2上的实验

结论

我们提出了PICa,这是一种使用GPT-3进行基于小样本的VQA的方法。PICa没有使用明确的结构化知识库来检索和推理外部知识,而是通过提示GPT-3来联合获取和处理相关知识。它继承了GPT-3强大的小样本能力,并以显著的优势超过了OK-VQA上的监督技术。分析表明,我们的方法隐含地获取了相关知识来回答问题。

相关推荐
semantist@语校13 小时前
第六十篇|语言学校 Prompt 工程化实践:从字段解释到判断边界的结构设计(以日生日本语学园为例)
大数据·数据库·人工智能·百度·ai·prompt·知识图谱
AomanHao13 小时前
【ISP】图像质量评价指标-NIQE
人工智能·机器学习
sali-tec13 小时前
C# 基于OpenCv的视觉工作流-章14-轮廓提取
人工智能·opencv·算法·计算机视觉
晨非辰13 小时前
Linux权限实战速成:用户切换/文件控制/安全配置15分钟掌握,解锁核心操作与权限模型内核逻辑
linux·运维·服务器·c++·人工智能·后端
草莓熊Lotso13 小时前
Linux 进程创建与终止全解析:fork 原理 + 退出机制实战
linux·运维·服务器·开发语言·汇编·c++·人工智能
Agentcometoo13 小时前
2026 AI 元年|智能体来了:Agent Native 正在取代 Copilot,定义下一代 AI 公司
人工智能
weixin_6695452014 小时前
持续2.7A峰值5A有刷直流马达正反转驱动芯片TC1305E
人工智能·嵌入式硬件·硬件工程·信息与通信
我家大宝最可爱15 小时前
强化学习基础-拒绝采样
人工智能·算法·机器学习
刘大猫.16 小时前
XNMS项目-拓扑图展示
java·人工智能·算法·拓扑·拓扑图·节点树·xnms
TTGGGFF21 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法