自然语言处理-词向量模型-Word2Vec

通常数据的维度越高,能提供的信息也就越多,从而计算结果的可靠性就更值得信赖

如何来描述语言的特征呢,通常都在词的层面上构建特征,Word2Vec就是要把词转换成向量

假设现在已经拿到一份训练好的词向量,其中每一个词都表示为50维的向量

如果在热度图中显示,结果如下

在结果中可以发现,相似的词在特征表达中比较相似,也就是说词的特征是有意义的!

在词向量模型中,输入和输出分别是什么?

数据从哪来?

构建训练数据

不同模型对比

CBOW模型

Skip-gram模型

Skip-gram模型所需训练数据集

如何进行训练?

如果一个语料库稍微大一些,可能的结果简直太多了,最后一层相当于softmax,计算起来十分耗时,有什么别的方法吗?

初始方案:输入两个单词,看他们是不是前后对应的输入输出,也就相当于一个二分类任务

出发点非常好,但是此时训练集构建出来的标签全为1,无法进行较好的训练

改进方案。加入一些负样本(负采样模型)

词向量训练过程

初始化词向量矩阵

通过神经网络反向传播来计算更新,此时不光更新权重参数,还更新输入数据

相关推荐
居7然44 分钟前
大模型微调面试题全解析:从概念到实战
人工智能·微调
haidizym2 小时前
质谱数据分析环节体系整理
大数据·人工智能·数据分析·ai4s
Godspeed Zhao2 小时前
Tesla自动驾驶域控制器产品(AutoPilot HW)的系统化梳理
人工智能·机器学习·自动驾驶
fsnine2 小时前
机器学习案例——预测矿物类型(模型训练)
人工智能·机器学习
数据知道2 小时前
机器翻译60天修炼专栏介绍和目录
人工智能·自然语言处理·机器翻译
分布式存储与RustFS3 小时前
RustFS的边缘计算优化方案在5G MEC场景下的实测数据如何?
人工智能·5g·开源·边缘计算·rustfs
2501_924890523 小时前
商超场景徘徊识别误报率↓79%!陌讯多模态时序融合算法落地优化
java·大数据·人工智能·深度学习·算法·目标检测·计算机视觉
SalvoGao3 小时前
空转学习 | cell-level 与 spot-level的区别
人工智能·深度学习·学习
初岘3 小时前
自动驾驶GOD:3D空间感知革命
人工智能·3d·自动驾驶
什么都想学的阿超4 小时前
【大语言模型 15】因果掩码与注意力掩码实现:深度学习中的信息流控制艺术
人工智能·深度学习·语言模型