分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

目录

效果一览







基本介绍

Matlab实现PSO-DBN粒子群优化深度置信网络多输入分类预测

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。

粒子群优化学习率、迭代次数和隐藏层单元数目。

程序设计

clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');



%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  适应度曲线
figure
plot(1: length(curve), curve, 'LineWidth', 1.5);
title('PSO-DBN适应度变化曲线', 'FontSize', 10);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
xlim([1, length(curve)])
grid on

%%  损失函数曲线
figure
plot(1: length(accu), accu, 'r-', 'LineWidth', 1)
xlabel('迭代次数')
ylabel('准确率')
legend('训练集正确率')
title ('训练集正确率曲线')
xlim([1, length(accu)])
grid
    
figure
plot(1 : length(loss), loss, 'b-', 'LineWidth', 1)
xlabel('迭代次数')
ylabel('损失函数')
legend('训练集损失值')
title ('训练集损失函数曲线')
xlim([1, length(loss)])
grid

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

1\] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503 \[2\] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关推荐
有Li36 分钟前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
加油吧zkf11 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
羊小猪~~14 小时前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
蓝婷儿20 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
.30-06Springfield21 小时前
利用人名语言分类案例演示RNN、LSTM和GRU的区别(基于PyTorch)
人工智能·pytorch·python·rnn·分类·gru·lstm
归去_来兮1 天前
支持向量机(SVM)分类
机器学习·支持向量机·分类
不秃的卤蛋11 天前
回归任务与分类任务的区别
人工智能·分类·数据挖掘·回归
SHIPKING39312 天前
【机器学习四大核心任务类型详解】分类、回归、聚类、降维都是什么?
机器学习·分类·回归
夜松云12 天前
GoogLeNet:图像分类神经网络的深度剖析与实践
图像处理·人工智能·神经网络·分类·数据挖掘·卷积神经网络·分类算法
我不是小upper12 天前
时间序列预测、分类 | 图神经网络开源代码分享(上)
深度学习·神经网络·分类