分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

分类预测 | MATLAB实现PSO-DBN粒子群优化深度置信网络多输入分类预测

目录

效果一览







基本介绍

Matlab实现PSO-DBN粒子群优化深度置信网络多输入分类预测

多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。

粒子群优化学习率、迭代次数和隐藏层单元数目。

程序设计

clike 复制代码
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
clc;
clear;
warning off
close all
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  添加路径
addpath("Toolbox\")
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  读取数据
res = xlsread('数据集.xlsx');



%%  性能评价
error1 = sum((T_sim1' == T_train)) / M * 100 ;
error2 = sum((T_sim2' == T_test )) / N * 100 ;
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  适应度曲线
figure
plot(1: length(curve), curve, 'LineWidth', 1.5);
title('PSO-DBN适应度变化曲线', 'FontSize', 10);
xlabel('迭代次数', 'FontSize', 10);
ylabel('适应度值', 'FontSize', 10);
xlim([1, length(curve)])
grid on

%%  损失函数曲线
figure
plot(1: length(accu), accu, 'r-', 'LineWidth', 1)
xlabel('迭代次数')
ylabel('准确率')
legend('训练集正确率')
title ('训练集正确率曲线')
xlim([1, length(accu)])
grid
    
figure
plot(1 : length(loss), loss, 'b-', 'LineWidth', 1)
xlabel('迭代次数')
ylabel('损失函数')
legend('训练集损失值')
title ('训练集损失函数曲线')
xlim([1, length(loss)])
grid

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'PSO-DBN预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  混淆矩阵
if flag_conusion == 1

    figure
    cm = confusionchart(T_train, T_sim1);
    cm.Title = 'Confusion Matrix for Train Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
    
    figure
    cm = confusionchart(T_test, T_sim2);
    cm.Title = 'Confusion Matrix for Test Data';
    cm.ColumnSummary = 'column-normalized';
    cm.RowSummary = 'row-normalized';
end

参考资料

1\] https://download.csdn.net/download/kjm13182345320/87899283?spm=1001.2014.3001.5503 \[2\] https://download.csdn.net/download/kjm13182345320/87899230?spm=1001.2014.3001.5503

相关推荐
leo__5204 小时前
MATLAB实现高光谱分类算法
支持向量机·matlab·分类
OpenBayes1 天前
OCR 新范式!DeepSeek 以「视觉压缩」替代传统字符识别;Bald Classification数据集助力高精度人像分类
人工智能·深度学习·分类·数据挖掘·ocr·数据集·deepseek
Dev7z1 天前
结合HOG特征与支持向量机(SVM)的车牌字符识别系统
人工智能·分类·数据挖掘
机器学习之心1 天前
MATLAB基于BNT工具箱的多输入分类预测
matlab·分类
年年测试1 天前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
abcwoabcwo2 天前
回归、预测、分类三者关系
分类·数据挖掘·回归
大数据魔法师3 天前
分类与回归算法(二) - 线性回归
分类·回归·线性回归
Dev7z3 天前
基于ResNet50和PyTorch的猫狗图像分类系统设计与实现
人工智能·pytorch·分类
蒋星熠3 天前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类
算法与编程之美4 天前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘