TensorFlow1

bash 复制代码
tf.session()

用于运行TensorFlow操作的类

一个Session对象封装了Operation执行对象的环境,并对Tensor对象进行计算,例如:

bash 复制代码
a=tf.constant(5.0)
b=tf.constant(6.0)
c=a*b
sess=tf.Session()
print(sess.run(c))
bash 复制代码
tf.constant()
tf​.​constant​(​value​,​ dtype​=​None​,​ shape​=​None​,​ name​=​'Const'​,​ verify_shape​=​False) #value是一个必须值,可以是一个数值,也可以是一个列表,可以是一维的,也可以是多维的
# dtype:数据类型,一般可以是tf.float32,tf.float64
# shape:表示张量的形状,及维数以及每一维的大小
# name:可以是任何字符串
#verify_shape:默认false,true表示检查value是否与shape的形状相符,不相符报错
bash 复制代码
#构建数值常量
tensor=tf.constant(1)
#用去值函数eval()来查看创建的tensor的值
sess=tf.Session()
with sess.as_default():
	print("结果是:",tensot.eval())
tensor = tf.constant([1,2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant(-1,shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant([1,2,3,4,5,6],shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())
    a=tf.zeros([2,3],dtype=tf.float32,name=None)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.ones([2,3],dtype=tf.int32)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.fill([3,2],8)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.linspace(0.0,1.0,10,name=None)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.range(0,5,1)
with sess.as_default():
    print('结果是:',a.eval())
相关推荐
Blossom.1182 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn3 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
海盗儿4 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
不爱写代码的玉子4 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study5 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
小喵喵生气气5 小时前
Python60日基础学习打卡Day46
深度学习·机器学习
红衣小蛇妖7 小时前
神经网络-Day44
人工智能·深度学习·神经网络
且慢.5897 小时前
Python_day47
python·深度学习·计算机视觉
&永恒的星河&8 小时前
基于TarNet、CFRNet与DragonNet的深度因果推断模型全解析
深度学习·因果推断·cfrnet·tarnet·dragonnet
Blossom.1189 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask