TensorFlow1

bash 复制代码
tf.session()

用于运行TensorFlow操作的类

一个Session对象封装了Operation执行对象的环境,并对Tensor对象进行计算,例如:

bash 复制代码
a=tf.constant(5.0)
b=tf.constant(6.0)
c=a*b
sess=tf.Session()
print(sess.run(c))
bash 复制代码
tf.constant()
tf​.​constant​(​value​,​ dtype​=​None​,​ shape​=​None​,​ name​=​'Const'​,​ verify_shape​=​False) #value是一个必须值,可以是一个数值,也可以是一个列表,可以是一维的,也可以是多维的
# dtype:数据类型,一般可以是tf.float32,tf.float64
# shape:表示张量的形状,及维数以及每一维的大小
# name:可以是任何字符串
#verify_shape:默认false,true表示检查value是否与shape的形状相符,不相符报错
bash 复制代码
#构建数值常量
tensor=tf.constant(1)
#用去值函数eval()来查看创建的tensor的值
sess=tf.Session()
with sess.as_default():
	print("结果是:",tensot.eval())
tensor = tf.constant([1,2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant(-1,shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant([1,2,3,4,5,6],shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())
    a=tf.zeros([2,3],dtype=tf.float32,name=None)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.ones([2,3],dtype=tf.int32)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.fill([3,2],8)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.linspace(0.0,1.0,10,name=None)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.range(0,5,1)
with sess.as_default():
    print('结果是:',a.eval())
相关推荐
管牛牛6 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
副露のmagic9 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc9 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
爱吃泡芙的小白白11 小时前
神经网络压缩实战指南:让大模型“瘦身”跑得更快
人工智能·深度学习·神经网络·模型压缩
YelloooBlue12 小时前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow
AI即插即用12 小时前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
逄逄不是胖胖12 小时前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
咚咚王者13 小时前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
机 _ 长14 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
美狐美颜sdk14 小时前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api