TensorFlow1

bash 复制代码
tf.session()

用于运行TensorFlow操作的类

一个Session对象封装了Operation执行对象的环境,并对Tensor对象进行计算,例如:

bash 复制代码
a=tf.constant(5.0)
b=tf.constant(6.0)
c=a*b
sess=tf.Session()
print(sess.run(c))
bash 复制代码
tf.constant()
tf​.​constant​(​value​,​ dtype​=​None​,​ shape​=​None​,​ name​=​'Const'​,​ verify_shape​=​False) #value是一个必须值,可以是一个数值,也可以是一个列表,可以是一维的,也可以是多维的
# dtype:数据类型,一般可以是tf.float32,tf.float64
# shape:表示张量的形状,及维数以及每一维的大小
# name:可以是任何字符串
#verify_shape:默认false,true表示检查value是否与shape的形状相符,不相符报错
bash 复制代码
#构建数值常量
tensor=tf.constant(1)
#用去值函数eval()来查看创建的tensor的值
sess=tf.Session()
with sess.as_default():
	print("结果是:",tensot.eval())
tensor = tf.constant([1,2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant(-1,shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant([1,2,3,4,5,6],shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())
    a=tf.zeros([2,3],dtype=tf.float32,name=None)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.ones([2,3],dtype=tf.int32)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.fill([3,2],8)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.linspace(0.0,1.0,10,name=None)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.range(0,5,1)
with sess.as_default():
    print('结果是:',a.eval())
相关推荐
UQI-LIUWJ1 小时前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL1 小时前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
北京地铁1号线2 小时前
GPT(Generative Pre-trained Transformer)模型架构与损失函数介绍
gpt·深度学习·transformer
fantasy_arch2 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Shiyuan74 小时前
【检索通知】2025年IEEE第二届深度学习与计算机视觉国际会议检索
人工智能·深度学习·计算机视觉
cyyt7 小时前
深度学习周报(9.1~9.7)
人工智能·深度学习
max5006007 小时前
图像处理:实现多图点重叠效果
开发语言·图像处理·人工智能·python·深度学习·音视频
西猫雷婶10 小时前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
IMER SIMPLE10 小时前
人工智能-python-深度学习-神经网络-MobileNet V1&V2
人工智能·python·深度学习
盼小辉丶10 小时前
TensorFlow深度学习实战(37)——深度学习的数学原理
人工智能·深度学习·tensorflow