TensorFlow1

bash 复制代码
tf.session()

用于运行TensorFlow操作的类

一个Session对象封装了Operation执行对象的环境,并对Tensor对象进行计算,例如:

bash 复制代码
a=tf.constant(5.0)
b=tf.constant(6.0)
c=a*b
sess=tf.Session()
print(sess.run(c))
bash 复制代码
tf.constant()
tf​.​constant​(​value​,​ dtype​=​None​,​ shape​=​None​,​ name​=​'Const'​,​ verify_shape​=​False) #value是一个必须值,可以是一个数值,也可以是一个列表,可以是一维的,也可以是多维的
# dtype:数据类型,一般可以是tf.float32,tf.float64
# shape:表示张量的形状,及维数以及每一维的大小
# name:可以是任何字符串
#verify_shape:默认false,true表示检查value是否与shape的形状相符,不相符报错
bash 复制代码
#构建数值常量
tensor=tf.constant(1)
#用去值函数eval()来查看创建的tensor的值
sess=tf.Session()
with sess.as_default():
	print("结果是:",tensot.eval())
tensor = tf.constant([1,2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant(-1,shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())

tensor = tf.constant([1,2,3,4,5,6],shape=[2,3])
with sess.as_default():
    print('结果是:',tensor.eval())
    a=tf.zeros([2,3],dtype=tf.float32,name=None)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.ones([2,3],dtype=tf.int32)
with sess.as_default():
    print('结果是:',a.eval())
a=tf.fill([3,2],8)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.linspace(0.0,1.0,10,name=None)
with sess.as_default():
    print('结果是:',a.eval())

a=tf.range(0,5,1)
with sess.as_default():
    print('结果是:',a.eval())
相关推荐
泰迪智能科技011 小时前
高校深度学习视觉应用平台产品介绍
人工智能·深度学习
Jeremy_lf3 小时前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
冰蓝蓝4 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
wydxry6 小时前
LoRA(Low-Rank Adaptation)模型微调
深度学习
IT古董8 小时前
【漫话机器学习系列】019.布里(莱)尔分数(Birer score)
人工智能·深度学习·机器学习
醒了就刷牙8 小时前
transformer用作分类任务
深度学习·分类·transformer
小陈phd9 小时前
深度学习实战之超分辨率算法(tensorflow)——ESPCN
网络·深度学习·神经网络·tensorflow
gloomyfish10 小时前
【开发实战】QT5+ 工业相机 + OpenCV工作流集成演示
图像处理·深度学习·qt·opencv·计算机视觉
视觉&物联智能11 小时前
【杂谈】-为什么Python是AI的首选语言
开发语言·人工智能·python·深度学习·机器学习
Sherry Wangs11 小时前
PromptGIP:Unifying lmage Processing as Visual Prompting Question Answering
人工智能·深度学习·图像增强·数字人技术·all-in-one