逻辑回归(Logistic Regression)

1.分类问题

在分类问题中,你要预测的变量 y是离散的值,我们将学习一种叫做逻辑回归 (Logistic Regression) 的算法,这是目前最流行使用最广泛的一种学习算法。

在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。

我们从二元的分类问题开始讨论。

线性回归为什么不适用于分类问题? 回答如下:

2.假说表示

在这段内容中,我要给你展示假设函数的表达式,也就是说,在分类问题中,要用什么样的函数来表示我们的假设。此前我们说过,希望我们的分类器的输出值在0和1之间,因此,我们希望想出一个满足某个性质的假设函数,这个性质是它的预测值要在0和1之间。

3.判定边界

现在讲下决策边界(decision boundary)的概念。这个概念能更好地帮助我们理解逻辑回归的假设函数在计算什么。

【横坐标变量x1,纵坐标变量x2,训练集的叉叉表示患肿瘤,圆圈表示没换肿瘤】

【上图的分界线说的就是边界】

参考内容:

吴恩达机器学习笔记

相关推荐
NAGNIP13 小时前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队14 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
AI小云18 小时前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
Fanxt_Ja18 小时前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下18 小时前
最终的信号类
开发语言·c++·算法
茉莉玫瑰花茶19 小时前
算法 --- 字符串
算法
博笙困了19 小时前
AcWing学习——差分
c++·算法
NAGNIP19 小时前
认识 Unsloth 框架:大模型高效微调的利器
算法
NAGNIP19 小时前
大模型微调框架之LLaMA Factory
算法
echoarts19 小时前
Rayon Rust中的数据并行库入门教程
开发语言·其他·算法·rust