哈夫曼编码及例程

哈夫曼编码是一种常见的无损压缩算法,通过根据字符出现的频率构建一个最优编码树,将频率较高的字符用较短的编码表示,从而实现数据的压缩。下面是一个简单的例程来演示如何使用哈夫曼编码进行文本数据的压缩和解压缩。

压缩过程:

  1. 统计输入文本中每个字符的出现频率。
  2. 根据字符频率构建哈夫曼树。频率越高的字符离根节点越近。
  3. 根据哈夫曼树生成每个字符的编码,左子树路径上为0,右子树路径上为1。
  4. 使用生成的编码对输入文本中的每个字符进行替换,生成压缩后的二进制数据。

解压缩过程:

  1. 使用相同的字符频率构建哈夫曼树。
  2. 从根节点开始,按压缩数据的每一位依次遍历哈夫曼树。
  3. 如果遇到0,则移动到当前节点的左子树;如果遇到1,则移动到当前节点的右子树。
  4. 当到达叶子节点时,输出对应的字符,并返回根节点继续处理下一位。

以下是一个简单的Python例程,展示了如何使用哈夫曼编码来压缩和解压缩文本数据。

复制代码
import heapq
from collections import defaultdict

class HuffmanNode:
    def __init__(self, char, freq):
        self.char = char
        self.freq = freq
        self.left = None
        self.right = None

def build_frequency_table(data):
    frequency_table = defaultdict(int)
    for char in data:
        frequency_table[char] += 1
    return frequency_table

def build_huffman_tree(frequency_table):
    heap = []
    for char, freq in frequency_table.items():
        node = HuffmanNode(char, freq)
        heapq.heappush(heap, (freq, id(node), node))

    while len(heap) > 1:
        freq1, _, left = heapq.heappop(heap)
        freq2, _, right = heapq.heappop(heap)
        merged_freq = freq1 + freq2
        merged_node = HuffmanNode(None, merged_freq)
        merged_node.left = left
        merged_node.right = right
        heapq.heappush(heap, (merged_freq, id(merged_node), merged_node))

    _, _, root = heapq.heappop(heap)
    return root

def build_encoding_table(root):
    encoding_table = {}

    def traverse(node, code):
        if node.char is not None:
            encoding_table[node.char] = code
        else:
            traverse(node.left, code + '0')
            traverse(node.right, code + '1')

    traverse(root, '')
    return encoding_table

def encode_text(data, encoding_table):
    encoded_data = ''
    for char in data:
        encoded_data += encoding_table[char]
    return encoded_data

def decode_text(encoded_data, root):
    decoded_data = ''
    node = root
    for bit in encoded_data:
        if bit == '0':
            node = node.left
        else:
            node = node.right

        if node.char is not None:
            decoded_data += node.char
            node = root

    return decoded_data

# 示例用法
text = "Hello, world!"
frequency_table = build_frequency_table(text)
huffman_tree = build_huffman_tree(frequency_table)
encoding_table = build_encoding_table(huffman_tree)
encoded_data = encode_text(text, encoding_table)
decoded_data = decode_text(encoded_data, huffman_tree)

print("原始文本:", text)
print("压缩后的数据:", encoded_data)
print("解压缩后的文本:", decoded_data)

这个例程包含了构建频率表、构建哈夫曼树、生成编码表、压缩和解压缩等步骤,可以对输入的文本进行压缩并恢复。

相关推荐
梁下轻语的秋缘1 小时前
每日c/c++题 备战蓝桥杯 ([洛谷 P1226] 快速幂求模题解)
c++·算法·蓝桥杯
CODE_RabbitV1 小时前
【深度强化学习 DRL 快速实践】逆向强化学习算法 (IRL)
算法
mit6.8242 小时前
[贪心_7] 最优除法 | 跳跃游戏 II | 加油站
数据结构·算法·leetcode
keep intensify2 小时前
通讯录完善版本(详细讲解+源码)
c语言·开发语言·数据结构·算法
shix .2 小时前
2025年PTA天梯赛正式赛 | 算法竞赛,题目详解
数据结构·算法
风铃儿~2 小时前
Java面试高频问题(26-28)
java·算法·面试
wuqingshun3141592 小时前
蓝桥杯 4. 卡片换位
算法·职场和发展·蓝桥杯
江沉晚呤时2 小时前
深入了解C# List集合及两种常见排序算法:插入排序与堆排序
windows·sql·算法·oracle·c#·排序算法·mybatis
Eric.Lee20213 小时前
数据集-目标检测系列- F35 战斗机 检测数据集 F35 plane >> DataBall
人工智能·算法·yolo·目标检测·计算机视觉
Gsen28193 小时前
AI大模型从0到1记录学习 数据结构和算法 day20
数据结构·学习·算法·生成对抗网络·目标跟踪·语言模型·知识图谱