分类模型训练pil、torchvision.transforms和opencv的resize

参考:https://blog.csdn.net/weixin_41012399/article/details/126049885

https://www.cnpython.com/qa/1291644

https://blog.csdn.net/weixin_44966641/article/details/125084573

https://blog.csdn.net/IEEE_FELLOW/article/details/115536987

训练时用pil读取图片,使用torchvision.transforms.Resize 进行数据处理。因为transforms.Resize当输入为PIL图像时,默认使用的PIL的resize进行处理,除了默认的双线性插值,还会进行antialiasing。

PyTorch 中的 torchvision.transforms.Resize 就是采用的 PIL 的 resize。

部署的时候使用opcv的resize处理,发现不一致,最好在训练的时候统一用opencv处理图片。

transforms.Resize 和 PIL 的 resize 的插值方式有区别吗?

A:是的,transforms.Resize 和 PIL 的 resize 的默认插值方式是不同的。

在 transforms.Resize 中,默认使用的是 PIL.Image.BILINEAR,即双线性插值。而在 PIL 的 resize 中,默认使用的是 PIL.Image.BICUBIC,即三次样条插值。

当然,transforms.Resize 也可以指定其他的插值方式,如 PIL.Image.NEAREST(最近邻插值)、PIL.Image.BICUBIC 等。同样地,也可以在 PIL 的 resize 中指定其他的插值方式。

相关推荐
有Li4 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
jndingxin11 小时前
OpenCV CUDA模块设备层-----反向二值化阈值处理函数thresh_binary_inv_func()
人工智能·opencv·计算机视觉
jndingxin13 小时前
OpenCV CUDA模块设备层-----在 GPU 上执行类似于 std::copy 的操作函数warpCopy()
人工智能·opencv·计算机视觉
晓131313 小时前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
jndingxin13 小时前
OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()
人工智能·opencv·计算机视觉
加油吧zkf14 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
顾道长生'15 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
羊小猪~~17 小时前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
luofeiju19 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数
好开心啊没烦恼1 天前
Python:线性代数,向量内积谐音记忆。
开发语言·python·线性代数·数据挖掘·数据分析