分类模型训练pil、torchvision.transforms和opencv的resize

参考:https://blog.csdn.net/weixin_41012399/article/details/126049885

https://www.cnpython.com/qa/1291644

https://blog.csdn.net/weixin_44966641/article/details/125084573

https://blog.csdn.net/IEEE_FELLOW/article/details/115536987

训练时用pil读取图片,使用torchvision.transforms.Resize 进行数据处理。因为transforms.Resize当输入为PIL图像时,默认使用的PIL的resize进行处理,除了默认的双线性插值,还会进行antialiasing。

PyTorch 中的 torchvision.transforms.Resize 就是采用的 PIL 的 resize。

部署的时候使用opcv的resize处理,发现不一致,最好在训练的时候统一用opencv处理图片。

transforms.Resize 和 PIL 的 resize 的插值方式有区别吗?

A:是的,transforms.Resize 和 PIL 的 resize 的默认插值方式是不同的。

在 transforms.Resize 中,默认使用的是 PIL.Image.BILINEAR,即双线性插值。而在 PIL 的 resize 中,默认使用的是 PIL.Image.BICUBIC,即三次样条插值。

当然,transforms.Resize 也可以指定其他的插值方式,如 PIL.Image.NEAREST(最近邻插值)、PIL.Image.BICUBIC 等。同样地,也可以在 PIL 的 resize 中指定其他的插值方式。

相关推荐
rgb2gray1 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
技术支持者python,php2 小时前
训练模型,物体识别(opencv)
人工智能·opencv·计算机视觉
大数据魔法师3 小时前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
大数据魔法师6 小时前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
happy egg7 小时前
随机森林分类VS回归
随机森林·分类·回归
studytosky7 小时前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
7***37457 小时前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘
用户199701080188 小时前
1688图片搜索API | 上传图片秒找同款 | 相似商品精准推荐
大数据·数据挖掘·图片资源
深蓝海拓8 小时前
OpenCV学习笔记之:调整ORB算法的参数以适应不同的图像
笔记·opencv·学习
Mrliu__11 小时前
Opencv(十六) : 图像边缘检测
人工智能·opencv·计算机视觉