《向量数据库指南》——Milvus Cloud当初为什么选择向量数据库这个赛道呢?

我们公司专注于向量数据库大约可以追溯到 2018 年左右。当时,向量数据库的概念并不广泛。我们的 CEO 力排众议,认为这个领域有巨大潜力,因为这与我们的愿景高度契合。我们的公司定位是构建一个能够在云上处理非结构化数据的基础设施产品。经过大量调研,我们意识到向量检索可能是未来处理非结构化数据语义和信息的关键。

另外一个重要的因素是,向量数据库与模型相比具有明显的区别。我们早在此前就认识到,处理非结构化数据需要依赖人工智能,需要模型的支持。然而,那时的模型与现在的 ChatGPT 等大型模型相比,性能有限。

作为初创公司,如果我们专注于开发模型方向,可能难以取得今天的成就,也难以像 ChatGPT 这样发布出色的产品。因此,我们决定将注意力放在基础设施上。鉴于我们团队成员都具备基础设施的背景,我们设想了一个能够有效支持高维数据处理的基础设施产品,即向量数据库的概念。

从 2019 年开始,我们便着手开发这个产品。当时,我们已经吸引了许多关注,尽管当时社区用户主要集中在传统的应用场景,如图像搜索和 NLP 领域的问答机器人。直到去年,随着大型模型的兴起,数据库的使用场景和用户需求发生了重大变化,也带火了向量数据库的需求。这个现象表明数据库的第一应用场景正在演变,用户对能力的需求也发生了显著改变。

相关推荐
nbsaas-boot11 小时前
SQL Server 存储过程开发规范(公司内部模板)
java·服务器·数据库
zgl_2005377911 小时前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
leo__52011 小时前
基于MATLAB的交互式多模型跟踪算法(IMM)实现
人工智能·算法·matlab
脑极体11 小时前
云厂商的AI决战
人工智能
acaad11 小时前
Redis下载与安装(Windows)
数据库·redis·缓存
玄〤11 小时前
黑马点评中 VoucherOrderServiceImpl 实现类中的一人一单实现解析(单机部署)
java·数据库·redis·笔记·后端·mybatis·springboot
njsgcs12 小时前
NVIDIA NitroGen 是强化学习还是llm
人工智能
SunflowerCoder12 小时前
EF Core + PostgreSQL 配置表设计踩坑记录:从 23505 到 ChangeTracker 冲突
数据库·postgresql·c#·efcore
短剑重铸之日12 小时前
《7天学会Redis》Day2 - 深入Redis数据结构与底层实现
数据结构·数据库·redis·后端
知乎的哥廷根数学学派12 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类