用 TripletLoss 优化bert ranking

下面是 用 TripletLoss 优化bert ranking 的demo

python 复制代码
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import BertModel, BertTokenizer
from sklearn.metrics.pairwise import pairwise_distances

class TripletRankingDataset(Dataset):
    def __init__(self, queries, positive_docs, negative_docs, tokenizer, max_length):
        self.input_ids_q = []
        self.attention_masks_q = []
        self.input_ids_p = []
        self.attention_masks_p = []
        self.input_ids_n = []
        self.attention_masks_n = []
        
        for query, pos_doc, neg_doc in zip(queries, positive_docs, negative_docs):
            encoded_query = tokenizer.encode_plus(query, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
            encoded_pos_doc = tokenizer.encode_plus(pos_doc, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
            encoded_neg_doc = tokenizer.encode_plus(neg_doc, padding='max_length', truncation=True, max_length=max_length, return_tensors='pt')
            
            self.input_ids_q.append(encoded_query['input_ids'])
            self.attention_masks_q.append(encoded_query['attention_mask'])
            self.input_ids_p.append(encoded_pos_doc['input_ids'])
            self.attention_masks_p.append(encoded_pos_doc['attention_mask'])
            self.input_ids_n.append(encoded_neg_doc['input_ids'])
            self.attention_masks_n.append(encoded_neg_doc['attention_mask'])
        
        self.input_ids_q = torch.cat(self.input_ids_q, dim=0)
        self.attention_masks_q = torch.cat(self.attention_masks_q, dim=0)
        self.input_ids_p = torch.cat(self.input_ids_p, dim=0)
        self.attention_masks_p = torch.cat(self.attention_masks_p, dim=0)
        self.input_ids_n = torch.cat(self.input_ids_n, dim=0)
        self.attention_masks_n = torch.cat(self.attention_masks_n, dim=0)
        
    def __len__(self):
        return len(self.input_ids_q)
    
    def __getitem__(self, idx):
        input_ids_q = self.input_ids_q[idx]
        attention_mask_q = self.attention_masks_q[idx]
        input_ids_p = self.input_ids_p[idx]
        attention_mask_p = self.attention_masks_p[idx]
        input_ids_n = self.input_ids_n[idx]
        attention_mask_n = self.attention_masks_n[idx]
        return input_ids_q, attention_mask_q, input_ids_p, attention_mask_p, input_ids_n, attention_mask_n

class BERTTripletRankingModel(torch.nn.Module):
    def __init__(self, bert_model_name, hidden_size):
        super(BERTTripletRankingModel, self).__init__()
        self.bert = BertModel.from_pretrained(bert_model_name)
        self.dropout = torch.nn.Dropout(0.1)
        self.fc = torch.nn.Linear(hidden_size, 1)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = self.dropout(outputs[1])
        logits = self.fc(pooled_output)
        return logits.squeeze()

def triplet_loss(anchor, positive, negative, margin):
    distance_positive = torch.nn.functional.pairwise_distance(anchor, positive)
    distance_negative = torch.nn.functional.pairwise_distance(anchor, negative)
    losses = torch.relu(distance_positive - distance_negative + margin)
    return torch.mean(losses)

# 初始化BERT模型和分词器
bert_model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(bert_model_name)

# 示例输入数据
queries = ['I like cats', 'The sun is shining']
positive_docs = ['I like dogs', 'The weather is beautiful']
negative_docs = ['Snakes are dangerous', 'It is raining']

# 超参数
batch_size = 8
max_length = 128
learning_rate = 1e-5
num_epochs = 5
margin = 1.0

# 创建数据集和数据加载器
dataset = TripletRankingDataset(queries, positive_docs, negative_docs, tokenizer, max_length)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

# 初始化模型并加载预训练权重
model = BERTTripletRankingModel(bert_model_name, hidden_size=model.bert.config.hidden_size)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# 训练模型
model.train()

for epoch in range(num_epochs):
    total_loss = 0
    
    for input_ids_q, attention_masks_q, input_ids_p, attention_masks_p, input_ids_n, attention_masks_n in dataloader:
        optimizer.zero_grad()
        
        embeddings_q = model(inputids_q, attention_masks_q)
        embeddings_p = model(input_ids_p, attention_masks_p)
        embeddings_n = model(input_ids_n, attention_masks_n)
        
        loss = triplet_loss(embeddings_q, embeddings_p, embeddings_n, margin)
        
        total_loss += loss.item()
        
        loss.backward()
        optimizer.step()
    
    print(f"Epoch {epoch+1}/{num_epochs} - Loss: {total_loss:.4f}")

# 推断模型
model.eval()

with torch.no_grad():
    embeddings = model.bert.embeddings.word_embeddings(dataset.input_ids_q)
    pairwise_distances = pairwise_distances(embeddings.numpy())

# 输出结果
for i, query in enumerate(queries):
    print(f"Query: {query}")
    print("Documents:")
    
    for j, doc in enumerate(positive_docs):
        doc_idx = pairwise_distances[0][i * len(positive_docs) + j]
        doc_dist = pairwise_distances[1][i * len(positive_docs) + j]
        
        print(f"Document index: {doc_idx}, Distance: {doc_dist:.4f}")
        print(f"Document: {doc}")
        print("")

    print("---------")
相关推荐
voidmort16 分钟前
web3.py 简介:面向 Python 开发者的以太坊
开发语言·python·web3.py
后台开发者Ethan23 分钟前
LangGraph 的持久化
python·langgraph
强化学习与机器人控制仿真28 分钟前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
油炸小波1 小时前
02-AI应用开发平台Dify
人工智能·python·dify·coze
SunnyDays10112 小时前
从图片到PPT:用Python实现多图片格式(PNG/JPG/SVG)到幻灯片的批量转换
python·图片转ppt·png转ppt·jpg转ppt·svg转ppt·添加图片到ppt
2501_941145852 小时前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
CodeCraft Studio2 小时前
Excel处理控件Aspose.Cells教程:使用Python从Excel工作表中删除数据透视表
开发语言·python·excel·aspose·aspose.cells·数据透视表
普通网友2 小时前
用Python批量处理Excel和CSV文件
jvm·数据库·python
linuxxx1102 小时前
高考志愿填报辅助系统
redis·后端·python·mysql·ai·django·高考
无妄无望2 小时前
ragflow代码学习切片方式(1)docling_parser.py
人工智能·python·学习