OpenCV(三十八):二维码检测

1.二维码识别原理

功能图形:

  1. 位置探测图形:通常,二维码中有三个位置探测图形,呈现L型或大角度十字架形状,分布在二维码的三个角上,用于帮助扫描设备定位二维码的位置和方向。

  2. 位置探测图形分隔符:帮助扫描设备区分位置探测图形和二维码的数据区域。

  3. 计算模式:通常是一个小的正方形图案,用于校准扫描设备以捕捉和解码二维码的图像。

  4. 对齐标记:通常是一系列小的正方形图案,用于帮助扫描设备在不同的距离和角度下更好地对准和解码二维码。

编码区格式:

  1. 格式信息:格式信息用于指定二维码的编码格式和纠错级别。

  2. 版本信息:版本信息指定了二维码的大小和数据容量。。

  3. 数据和纠错码:编码区还包含实际的数据和纠错码。

2.二维码定位函数与识别函数

二维码定位函数 detect()

复制代码
bool detect(InputArray img, OutputArray points) const;
  • img: 待检测是否含有QR二维码的灰度图像或者彩色图像。
  • points: 包含QR二维码的最小区域四边形的四个顶点坐标,即二维码的四个顶点坐标。

二维码识别函数decode()

std::string decode(InputArray img, InputArray points, OutputArray straight_code = noArray()) const;

  • img:含有QR二维码的图像。
  • points:包含QR二维码的最小区域四边形的四个顶点坐标。
  • straight qrcode:经过校正和二值化的OR二维码。

示例代码:

复制代码
void qrcode(Mat image){
    Mat gray,qrcode_bin;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    QRCodeDetector qrCodeDetector;
    vector<Point> points;
    string information;
    bool isQRcode;
    isQRcode=qrCodeDetector.detect(gray,points);//识别二维码
    if(isQRcode){
        //解码二维码
        information=qrCodeDetector.decode(gray,points,qrcode_bin);
    }else{
        LOGD("无法识别二维码");
    }
    //绘制二维码的边框
    for(int i=0;i<points.size();i++){
        if(i==points.size()-1) {
            line(image, points[i], points[0], Scalar(0, 0, 255, 255), 2, 8);
            break;
        }
        line(image,points[i],points[i+1],Scalar(0,0,255,255),2,8);
    }
    //将解码内容输出到图片上
    putText(image,information.c_str(),Point(20,30),2,1,Scalar(0,0,255,255),8);
    //显示图像
    imwrite("/sdcard/DCIM/image.png",image);
    imwrite("/sdcard/DCIM/qrcode_bin.png",qrcode_bin);
}

输出图片:

经过校正和二值化的OR二维码:

3.二维码直接定位与识别函数detectAndDecode()

std::string cv::QRCodeDetector::detectAndDecode ( InputArray img,

OutputArray points = noArray(),

OutputArray straight qrcode = noArray()

)

  • img:含有QR二维码的图像
  • points: 包含QR二维码的最小区域四边形的四个顶点坐标
  • straight_qrcode:经过校正和二值化的OR二维码

示例代码:

复制代码
//利用函数直接定位二维码并解码
void qrcode2(Mat image){
    Mat gray;
    cvtColor(image,gray,COLOR_BGR2GRAY);
    QRCodeDetector qrCodeDetector;
    vector<Point> points;
    string information;
    information=qrCodeDetector.detectAndDecode(gray,points);
    //将解码内容输出到图片上
    putText(image,information.c_str(),Point(20,30),2,1,Scalar(0,0,255,255),8);
    //显示图像
    imwrite("/sdcard/DCIM/image2.png",image);
}

输出图片:

相关推荐
程序员陆通11 分钟前
独立开发A/B测试实用教程
人工智能·ai编程
knowfoot12 分钟前
硬核拆解!跟着公式“走”一遍,你也能彻底看懂神经网络
人工智能·神经网络
FF-Studio19 分钟前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
DDDDDouble22 分钟前
<二>Sping-AI alibaba 入门-记忆聊天及持久化
java·人工智能
PyAIExplorer23 分钟前
图像处理中的插值方法:原理与实践
图像处理·人工智能
狗头大军之江苏分军34 分钟前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
Mr.Winter`34 分钟前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
csdn_aspnet37 分钟前
C++ n条水平平行线与m条垂直平行线相交的平行四边形的数量
c++
CoovallyAIHub1 小时前
YOLO模型优化全攻略:从“准”到“快”,全靠这些招!
深度学习·算法·计算机视觉
闻缺陷则喜何志丹1 小时前
【BFS】 P10864 [HBCPC2024] Genshin Impact Startup Forbidden II|普及+
c++·算法·宽度优先·洛谷