【LangChain系列 11】Prompt模版——拼装组合

原文地址:【LangChain系列 11】Prompt模版------拼装组合

本文速读:

  • 多prompt模版组合

  • 单prompt模版拼装

在平常业务开发中,我们常常需要把一些公共模块提取出来作为一个独立的部分,然后将业务中去将这些模块进行组合。在LLM应用开发中,我们也会需要采用这种思想,比如将一些公共的promt模版独立出来,这样prompt模版就可以更好地复用,减少不必要的代码,保持代码和逻辑的简洁。

LangChain对prompt模版的组合提供两种方式:

  1. 针对多个prompt模版进行组合。

  2. 将多个部分拼装成一个prompt模版。

01 多prompt模版组合

LangChain提供了PipelinePrompt来进行多prompt模版组合。一个PipelinePrompt包含两个部分:

  • 最终的prompt模版:最终生成的prompt模版。

  • 待组合的prompt模版:它是一个列表,列表里的每一项包含一个名字和一个prompt模版。

如下面代码所示,full_prompt就是最终的 prompt模版,input_prompts就是 待组合的prompt模版;将input_prompts中的prompt模版最终组合成了full_prompt。

ini 复制代码
from langchain.prompts.pipeline import PipelinePromptTemplate
from langchain.prompts.prompt import PromptTemplate

full_template = """{introduction}

{example}

{start}"""
full_prompt = PromptTemplate.from_template(full_template)

introduction_template = """You are impersonating {person}."""
introduction_prompt = PromptTemplate.from_template(introduction_template)

example_template = """Here's an example of an interaction: 

Q: {example_q}
A: {example_a}"""
example_prompt = PromptTemplate.from_template(example_template)

start_template = """Now, do this for real!

Q: {input}
A:"""
start_prompt = PromptTemplate.from_template(start_template)

input_prompts = [
    ("introduction", introduction_prompt),
    ("example", example_prompt),
    ("start", start_prompt)
]
pipeline_prompt = PipelinePromptTemplate(final_prompt=full_prompt, pipeline_prompts=input_prompts)
print(pipeline_prompt.input_variables)

输出结果:

css 复制代码
['example_a', 'person', 'example_q', 'input']

执行下面代码:

ini 复制代码
print(pipeline_prompt.format(
    person="Elon Musk",
    example_q="What's your favorite car?",
    example_a="Tesla",
    input="What's your favorite social media site?"
))

输出结果:

rust 复制代码
    You are impersonating Elon Musk.
    Here's an example of an interaction: 
    
    Q: What's your favorite car?
    A: Tesla
    Now, do this for real!
    
    Q: What's your favorite social media site?
    A:
    

02 单prompt模版拼装

单prompt模版拼装是指将多个部分拼装成一个完整的prompt模版,一般来说是将字符串与prompt模版拼成一个新的prompt模版。下面主要介绍字符串prompt模版和对话prompt模版这两种模版的拼装,通过两个代码示例来介绍它们的用法。

字符串prompt模版

在下面代码中,将一个字符串prompt模版和两个字符串通过 + 拼装起来。

swift 复制代码
from langchain.prompts import PromptTemplate

prompt = (
    PromptTemplate.from_template("Tell me a joke about {topic}")
    + ", make it funny"
    + "\n\nand in {language}"
)
print(prompt)

输出结果:

ini 复制代码
PromptTemplate(input_variables=['language', 'topic'], output_parser=None, partial_variables={}, template='Tell me a joke about {topic}, make it funny\n\nand in {language}', template_format='f-string', validate_template=True)

执行代码:

ini 复制代码
print(prompt.format(topic="sports", language="spanish"))

输出结果:

vbnet 复制代码
'Tell me a joke about sports, make it funny\n\nand in spanish'

同样,我们可以在LLMChain中使用这个拼装的prompt。

ini 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain

model = ChatOpenAI()
chain = LLMChain(llm=model, prompt=prompt)
chain.run(topic="sports", language="spanish")

执行代码,输出结果:

arduino 复制代码
'¿Por qué el futbolista llevaba un paraguas al partido?\n\nPorque pronosticaban lluvia de goles.'

对话prompt模版

在下面代码中,将对话prompt中的Message和字符串通过 + 进行拼装,形成一个新的prompt模版,不仅可以将Message进行拼装,而且可以将MessagePrompt进行拼装,不过先要将MessagePrompt中的变量进行赋值。

ini 复制代码
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema import HumanMessage, AIMessage, SystemMessage

prompt = SystemMessage(content="You are a nice pirate")
new_prompt = (
    prompt
    + HumanMessage(content="hi")
    + AIMessage(content="what?")
    + "{input}"
)
print(new_prompt.format_messages(input="i said hi"))

输出结果:

python 复制代码
    [SystemMessage(content='You are a nice pirate', additional_kwargs={}),
     HumanMessage(content='hi', additional_kwargs={}, example=False),
     AIMessage(content='what?', additional_kwargs={}, example=False),
     HumanMessage(content='i said hi', additional_kwargs={}, example=False)]

同样地,可以在LLMChain中使用它:

javascript 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain

model = ChatOpenAI()
chain = LLMChain(llm=model, prompt=new_prompt)
chain.run("i said hi")

执行代码,输出结果:

vbnet 复制代码
'Oh, hello! How can I assist you today?'

本文小结

本文主要介绍了prompt模版的拼装组合,既可以将多个prompt模版进行组合,也可以对单个prompt模版进行拼装。

相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_8 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习