LeetCode 1359. Count All Valid Pickup and Delivery Options【动态规划,组合数学】1722

本文属于「征服LeetCode」系列文章之一,这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁,本系列将至少持续到刷完所有无锁题之日为止;由于LeetCode还在不断地创建新题,本系列的终止日期可能是永远。在这一系列刷题文章中,我不仅会讲解多种解题思路及其优化,还会用多种编程语言实现题解,涉及到通用解法时更将归纳总结出相应的算法模板。

为了方便在PC上运行调试、分享代码文件,我还建立了相关的仓库。在这一仓库中,你不仅可以看到LeetCode原题链接、题解代码、题解文章链接、同类题目归纳、通用解法总结等,还可以看到原题出现频率和相关企业等重要信息。如果有其他优选题解,还可以一同分享给他人。

由于本系列文章的内容随时可能发生更新变动,欢迎关注和收藏征服LeetCode系列文章目录一文以作备忘。

给你 n 笔订单,每笔订单都需要快递服务。

请你统计所有有效的 收件/配送 序列的数目,确保第 i 个物品的配送服务 delivery(i) 总是在其收件服务 pickup(i) 之后。

由于答案可能很大,请返回答案对 10^9 + 7 取余的结果。

示例 1:

js 复制代码
输入:n = 1
输出:1
解释:只有一种序列 (P1, D1),物品 1 的配送服务(D1)在物品 1 的收件服务(P1)后。

示例 2:

js 复制代码
输入:n = 2
输出:6
解释:所有可能的序列包括:
(P1,P2,D1,D2),(P1,P2,D2,D1),(P1,D1,P2,D2),(P2,P1,D1,D2),(P2,P1,D2,D1) 和 (P2,D2,P1,D1)。
(P1,D2,P2,D1) 是一个无效的序列,因为物品 2 的收件服务(P2)不应在物品 2 的配送服务(D2)之后。

示例 3:

js 复制代码
输入:n = 3
输出:90

提示:

  • 1 <= n <= 500

解法 动态规划+组合数学+递推

设 f [ i ] f[i] f[i] 表示订单数量为 i 时的序列数目,我们希望通过 f [ 1 ] , f [ 2 ] , . . . , f [ i − 1 ] f[1], f[2], ..., f[i - 1] f[1],f[2],...,f[i−1] 得到 f [ i ] f[i] f[i] 的值,这样就可以使用递推的方法得到 f [ n ] f[n] f[n] 了。

由于 f [ i ] f[i] f[i] 包含了 i i i 份订单,我们可以将其拆分为前 i − 1 i - 1 i−1 份订单(编号为 1 , 2 , . . . , i − 1 1, 2, ..., i - 1 1,2,...,i−1 )与 1 1 1 份额外的订单(编号为 i)。对于一个包含前 i − 1 i - 1 i−1 份订单的固定序列,它的长度为 ( i − 1 ) ∗ 2 (i - 1) * 2 (i−1)∗2 ,我们只需要在这个序列中加上第 i i i 份订单,就可以得到一条订单数量为 i i i 的序列。

那么有多少种不同的方法能够加上第 i i i 份订单呢?第 i 份订单包含 P i P_i Pi 和 D i D_i Di ,并且 P i P_i Pi 在序列中必须出现在 D i D_i Di 之前,那么我们可以将这些方法分成两类:

  • 第一类: P i P_i Pi 和 D i D_i Di 被添加到了序列中连续的位置 。由于序列的长度为 ( i − 1 ) ∗ 2 (i - 1) * 2 (i−1)∗2 ,那么可以添加的位置为序列的长度加 1 1 1 ,即 2 ( i − 1 ) + 1 = 2 i − 1 2(i - 1) + 1 = 2i - 1 2(i−1)+1=2i−1 ;
  • 第二类: P i P_i Pi 和 D i D_i Di 被添加到了序列中不连续的位置,那么就相当于在 i ∗ 2 − 1 i * 2 - 1 i∗2−1 个位置中选择两个不同的位置,前者用作添加 P i P_i Pi ,后者用作添加 D i D_i Di ,方法数为组合数 ( 2 i − 1 2 ) = ( 2 i − 1 ) ( i − 1 ) \binom{2i - 1}{2} = (2i - 1)(i - 1) (22i−1)=(2i−1)(i−1) 。

将这两类的方法数量相加,就可以得到:对于一个固定的包含前 i − 1 i - 1 i−1 份订单的固定序列,用 ( 2 i − 1 ) i (2i-1)i (2i−1)i 种方法可以加入第 i i i 份订单 。由于前 i − 1 i - 1 i−1 份订单对应的序列数目为 f [ i − 1 ] f[i - 1] f[i−1] ,并且对于任意两个不同的包含前 i − 1 i - 1 i−1 份订单的序列,都不会因为加上第 i i i 份订单使得它们变得相同 。因此我们就得到了递推公式:
f [ i ] = ( 2 i − 1 ) i ∗ f [ i − 1 ] f[i] =(2i−1)i∗f[i−1] f[i]=(2i−1)i∗f[i−1]

由于递推公式中 f [ i ] f[i] f[i] 仅与 f [ i − 1 ] f[i - 1] f[i−1] 有关,我们在递推式可以只存储 f [ i − 1 ] f[i - 1] f[i−1] 的值,而不用把 f [ 1 ] , f [ 2 ] , . . . , f [ i − 1 ] f[1], f[2], ..., f[i - 1] f[1],f[2],...,f[i−1] 都记录下来。

cpp 复制代码
using LL = long long;

class Solution {
private:
    static constexpr int mod = 1000000007;
public:
    int countOrders(int n) {
        if (n == 1) return 1;
        int ans = 1;
        for (int i = 2; i <= n; ++i)
            ans = (LL)ans * (i * 2 - 1) % mod * i % mod;
        return ans;
    }
};

复杂度分析:

  • 时间复杂度: O ( N ) O(N) O(N) 。
  • 空间复杂度: O ( 1 ) O(1) O(1) 。

解法2 整体法

除了递推法之外,我们也可以从整体进行考虑,直接得到 f [ i ] f[i] f[i] 的通项公式。

假设现在没有 D i D_i Di 必须在 P i P_i Pi 之后的要求,那么
f [ i ] = ( 2 i ) ! f[i] =(2i)! f[i]=(2i)!

这是因为我们可以将 P 1 , D 1 , P 2 , D 2 , ⋯   , P i , D i P_1, D_1, P_2, D_2, \cdots, P_i, D_i P1,D1,P2,D2,⋯,Pi,Di 的任意一个排列作为答案,排列的数目为 ( 2 i ) ! (2i)! (2i)! 。我们称这些排列为初始排列。

那么在加上了「 D i D_i Di 必须在 P i P_i Pi 之后」的要求后,有一些初始排列就不能作为答案了。但是我们可以对它们进行调整,使它们变成满足要求的排列。具体地,对于任意一个初始排列,如果第 j j j 个物品的 D j D_j Dj 出现在 P j P_j Pj 之前,那么我们就把 D j D_j Dj 和 P j P_j Pj 交换顺序。在对 j = 1 , 2 , . . . , i j = 1, 2, ..., i j=1,2,...,i 全部判断一遍之后,我们就可以得到一个满足要求的排列了 。然而这样会导致重复计数 ,这是因为不同的初始排列在交换顺序之后会得到相同的排列,例如当 i = 2 i = 2 i=2 时,初始排列
D 1 , D 2 , P 1 , P 2 D 1 , P 2 , P 1 , D 2 \begin{aligned}D1, D2, P1, P2 \\ D1, P2, P1, D2\end{aligned} D1,D2,P1,P2D1,P2,P1,D2

在交换后都会得到相同的排列 P 1 , P 2 , D 1 , D 2 P1, P2, D1, D2 P1,P2,D1,D2 如何去除重复计数呢?我们可以进行逆向思考,反过来计算一个排列可以从多少个初始排列得来。显然,对于排列中的 i i i 对 P j P_j Pj 和 D j D_j Dj ,我们将其中任意数量的对交换顺序,都可以得到一个不同的初始排列。交换顺序的选择有 2 i 2^i 2i 种(每一对 P j P_j Pj 和 D j D_j Dj​ 交换或不交换),因此一个排列对应着 2 i 2^i 2i 个初始排列 ,即排列的数目为:
f [ i ] = ( 2 i ) ! 2 i f[i] = \frac{(2i)!}{2^i} f[i]=2i(2i)!

这样就得到了 f [ i ] f[i] f[i] 的通项公式。由于通项公式中包含除法,在取模的意义下不好直接计算,我们可以将分母 2 i 2^i 2i 拆分成 i i i 个 222,与分子阶乘中的 i i i 个偶数相除,得到
f [ i ] = i ! ( 2 i − 1 ) ! ! f[i] = i!(2i-1)!! f[i]=i!(2i−1)!!

其中 ( 2 i − 1 ) ! ! = 1 ⋅ 3 ⋅ ⋯ ⋅ ( 2 i − 1 ) (2i-1)!! = 1 \cdot 3 \cdot \cdots \cdot (2i-1) (2i−1)!!=1⋅3⋅⋯⋅(2i−1) ,其与方法一中的递推式是一致的,可以直接使用方法一的代码。

相关推荐
回音谷27 分钟前
【算法】克里金(Kriging)插值原理及Python应用
python·算法·插值
硕风和炜1 小时前
【LeetCode: 112. 路径总和 + 二叉树 + 递归】
java·算法·leetcode·面试·二叉树·递归
Flerken1012 小时前
力扣【SQL连续问题】
数据库·sql·算法·leetcode·数据分析
AomanHao3 小时前
【阅读笔记】基于FPGA的红外图像二阶牛顿插值算法的实现
图像处理·笔记·算法·fpga开发·插值·超分
走在考研路上3 小时前
力扣242.有效的字母异位词
算法·leetcode·职场和发展
sjsjs113 小时前
【数据结构-堆】力扣2530. 执行 K 次操作后的最大分数
数据结构·算法·leetcode
yvestine3 小时前
数据挖掘——朴素贝叶斯分类
人工智能·算法·机器学习·分类·数据挖掘·贝叶斯分类
佑我中华3 小时前
C语言程序设计(第5版)习题解答-第4章
c语言·算法·图论
終不似少年遊*3 小时前
数据结构之线性表
数据结构·笔记·python·算法·线性表
嘻嘻哈哈樱桃3 小时前
有效字母异位词力扣--242
java·javascript·leetcode