ARM如何利用PMU的Cycle Counter(时钟周期)来计算出CPU的时钟频率

本章将学习如何利用ARM PMU的Cycle Counter,来计算出CPU的时钟周期,从而计算出CPU的时钟频率。在介绍计算方法前,有必要先介绍下什么是时钟周期、机器周期以及指令周期。

如何计算出CPU的时钟频率

  • 一,时钟周期,机器周期以及指令周期
    • [1.1 时钟周期(clock cycle)以及时钟频率(clock frequency)](#1.1 时钟周期(clock cycle)以及时钟频率(clock frequency))
    • [1.2 机器周期(Machine Cycle)/ CPU周期(CPU Cycle)](#1.2 机器周期(Machine Cycle)/ CPU周期(CPU Cycle))
    • [1.3 指令周期(Instruction Cycle)](#1.3 指令周期(Instruction Cycle))
    • [1.4 指令周期、机器周期以及时钟周期之间的关系](#1.4 指令周期、机器周期以及时钟周期之间的关系)
  • [二,PMU 的Cycle Counter](#二,PMU 的Cycle Counter)
    • [2.1 PMCCNTR_EL0, Performance Monitors Cycle Count Register](#2.1 PMCCNTR_EL0, Performance Monitors Cycle Count Register)
  • 三,如何计算出CPU的时钟频率
  • 四,参考文档

一,时钟周期,机器周期以及指令周期

1.1 时钟周期(clock cycle)以及时钟频率(clock frequency)

同学们是否还记得数电里学过的同步时序逻辑电路:电路里的所有触发器都是同一个时钟脉冲源,触发器的状态会与该时钟脉冲信号同步,即一个时钟脉冲到来,所有触发器的状态就改变一次。CPU与之类似,需要给CPU灌入一个连续的时钟脉冲信号,每一次脉冲到来,CPU内的晶体管就改变一次状态,而源源不断的时钟脉冲正是CPU能够执行计算任务的关键。

如上图所示,脉冲信号做出周期变化的最短时间称之为震荡周期,也称为 CPU 时钟周期。它是计算机中最基本的、最小的时间单位。周期的倒数就是频率,所以我们很容易得出时钟频率和时钟周期的关系:
时钟频率 = 1 时钟周期 时钟频率=\frac{1}{时钟周期} 时钟频率=时钟周期1
一秒(1 s)内,发出的震荡脉冲个数为时钟频率
。我们经常讲某个CPU的主频是多少GHz、多少MHz,并认为CPU的频率越高,其运算性能越强。从时钟频率的原理分析可知:时钟频率越高,一秒内发出的脉冲个数越多,CPU内的晶体管状态变化次数越多,即CPU的运算速度越快。

事实上,每个CPU,或者每个芯片都有自己的正常工作频率范围(在最小工作频率和最大工作频率之间)。时钟频率越高,晶体管状态变化越频繁,当晶体管未及时更新状态,而下一个脉冲信号就已经到来时,CPU有可能进入未知的状态,不能正常工作。

1.2 机器周期(Machine Cycle)/ CPU周期(CPU Cycle)

机器周期也称为CPU周期。

在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。

例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作(注意:每一个基本操作都是由若干CPU最基本的动作组成)。完成一个基本操作所需要的时间称为机器周期。通常用内存中读取一个指令字的最短时间来规定CPU周期。(原文)

机器周期是为了实现指令流水线而引入的概念,实际上对应的是指令流水线的各个阶段,称之为流水阶段(或功能段,流水级等)。

从下图可知,一个机器周期包含了若干个时钟周期:

1.3 指令周期(Instruction Cycle)

CPU从存储器中取出并执行一条指令所需的全部时间称之为指令周期 。一个指令周期通常用需要几个CPU周期来表示:

指令不同,所需的机器周期数也不同。对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。

1.4 指令周期、机器周期以及时钟周期之间的关系

简单概括就是:一个指令周期,包含多个 CPU 周期,而一个 CPU 周期包含多个时钟周期。

二,PMU 的Cycle Counter

PMU模块里有一个64-bit 位宽的计数器cycle counter,这个cycle counter的计数频率为CPU的时钟频率。可以通过读取寄存器 PMCCNTR_EL0 或者 PMCCNTR来获取当前cycle counter里的clock cycle。

2.1 PMCCNTR_EL0, Performance Monitors Cycle Count Register

寄存器PMCCNTR_EL0保存着CPU的cycle counter的值,记录着CPU时钟周期数( clock cycles)。AArch64系统寄存器PMCCNTR_EL0[63:0]映射到AArch32的PMCCNTR[63:0]。

需要注意的是:

  1. 尽管arm体系结构要求PMCCNTR_EL0 或PMCCNTR的直接读取按程序顺序进行,但并不要求在两次这样的读取之间计数增加。即使cycle counter在每个时钟周期中都在增加,软件也可能需要检查两次读取计数器之间的差是否为非零。
  2. WFI 和WFE指令或造成CPU 时钟停止,进入standby模式。此时所有计数器的时钟频率也会发生变化。这意味着当时钟被WFI和WFE指令停止时,PMCCNTR_EL0是否会继续计数是受约束的,不可预测的。

使用如下指令即可读取CPU时钟周期数( clock cycles)到指定寄存器:

c 复制代码
;AArch64:
MRS <Xt>, PMCCNTR_EL0
;AArch32:
MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

三,如何计算出CPU的时钟频率

我们有了上文的基础知识作为铺垫,就可以来计算CPU的时钟频率了。基本原理如下:

  1. 在固定时间T内记录下CPU经过的时钟周期数C。
  2. CPU的时钟频率F可得:
    时钟频率 F = 时钟周期数 C 固定时间 T 时钟频率F=\frac{时钟周期数C}{固定时间T} 时钟频率F=固定时间T时钟周期数C

所以我们的程序伪代码可以这样写:

c 复制代码
cycle1 = Read_PMCCNTR();
wait(10);//wait 10s
cycle2 = Read_PMCCNTR();
freq = (cycle2-cycle1)/10;

至于延时函数wait(),可以使用ARM CPU内部的generic timer或者 system counter来实现延时。

四,参考文档

https://wenwen.sogou.com/question/q660822487.htm

https://blog.csdn.net/weixin_37641832/article/details/88920468

https://zhuanlan.zhihu.com/p/461519409

相关推荐
w微信150135078125 小时前
小华一级 代理商 HC32F005C6PA-TSSOP20 HC32F005系列
c语言·arm开发·单片机·嵌入式硬件
憧憬一下6 小时前
Pinctrl子系统中Pincontroller和client驱动程序的编写
arm开发·嵌入式·c/c++·linux驱动开发
上海知从科技15 小时前
知从科技受邀出席ARM日产技术日
arm开发·科技
极客小张2 天前
基于STM32的智能温室环境监测与控制系统设计(代码示例)
c语言·arm开发·stm32·单片机·嵌入式硬件·物联网·毕业设计
TeYiToKu2 天前
笔记整理—linux驱动开发部分(6)platform平台总线
linux·c语言·arm开发·驱动开发·笔记·嵌入式硬件
飞腾开发者2 天前
飞腾平台Arm ComputeLibrary编译安装指南
linux·服务器·arm开发·后端·性能优化
CodingCos3 天前
【ARM Linux 系统稳定性分析入门及渐进 1.1 -- Crash 工具功能概述】
linux·arm开发·crash tools·linux crash·crash 工具使用
@haihi4 天前
IIC和SPI的区别和相同之处
arm开发·stm32·mcu
@@庆4 天前
FreeRTOS 数据传输方法(环形buffer,队列的本质)队列实验—多设备玩游戏
arm开发·stm32·单片机·嵌入式硬件·freertos
LensonYuan6 天前
信创环境模拟:X86架构下部署搭建aarch64的ARM虚拟机
arm开发·架构·aarch64·虚拟开发环境