/**
* 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。
* <p>
* 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
* <p>
* 返回容器可以储存的最大水量。
* <p>
* 说明:你不能倾斜容器。
* 输入:[1,8,6,2,5,4,8,3,7]
* 输出:49
* 解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
*/
java
public class top5 {
/**
* 双指针法
*/
private static int largestSize(int[] num) {
if (num.length == 0) {
return 0;
}
int res = 0;
int j = num.length - 1;
int i = 0;
while (i < j) {
int largestSize = (j - i) * Math.min(num[i], num[j]);
largestSize = Math.max(res, largestSize);
res = largestSize;
/*
如果选择固定一根柱子,另外一根变化,水的面积会有什么变化吗?稍加思考可得:
当前柱子是最两侧的柱子,水的宽度 ddd 为最大,其他的组合,水的宽度都比这个小。
左边柱子较短,决定了水的高度为 3。如果移动左边的柱子,新的水面高度不确定,一定不会超过右边的柱子高度 7。
如果移动右边的柱子,新的水面高度一定不会超过左边的柱子高度 3,也就是不会超过现在的水面高度。
* */
if (num[i] < num[j]) {
i++;
} else {
j--;
}
}
return res;
}
public static void main(String[] args) {
int num[] = {1,8,6,2,5,4,8,3,7};
System.out.println(largestSize(num));
}
}